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ABSTRACT
We prove that ak-ary 2-cubeQk

2 with 3 faulty edges but
where every vertex is incident with at least2 healthy edges
is bipancyclic, ifk ≥ 3, andk-pancyclic, ifk ≥ 5 is odd
(these results are optimal).
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1 Introduction

Low-dimensional tori are regularly used as interconnection
networks in distributed-memory parallel computers. For
example, the Alpha 21364-based HP GS1280 machine [7],
the iWarp [4] and the Cray X1E vector computer have a
two-dimensional torus as their interconnection networks,
while the Cray T3D and T3E [16] have three-dimensional
tori as theirs. Furthermore, two-dimensional mesh and
torus topologies are popular choices for networks-on-chips
[22]. This has motivated a considerable amount of work on
the structural aspects of (arbitrary dimensional) tori, and
in particular their uniform variantsk-ary n-cubes, that are
relevant to parallel computing. For example, thek-ary n-
cubeQk

n has the following basic properties: it is vertex-
and edge-symmetric [1]; it is Hamiltonian [3, 5]; it has di-
ametern⌊k

2 ⌋ [3, 5]; it has a recursive decomposition; and
it contains many important interconnection networks such
as cycles (of certain lengths) [1], meshes (of certain dimen-
sions) [3] and even hypercubes (of certain dimensions) [5].
Moreover, it has admirable properties in relation to rout-
ing, broadcasting and communication in general (see, for
example, [1, 5, 8]).

Of particular relevance to us are some recent results
concerning paths and cycles embedded withink-ary n-
cubes. Paths and cycles are fundamental in parallel com-
puting; for not only is there a multitude of algorithms
specifically designed for linear arrays of processors and cy-
cles of processors but paths and cycles appear as data struc-
tures in many more algorithms for parallel machines whose
processors are interconnected in a variety of topologies. We
shall be concerned with questions relating to Hamiltonicity,
pancyclicity and bipancyclicity (these concepts are defined
in the next section). The existence of these properties in

an interconnection network enables a much higher degree
of flexibility with regard to the simulation of linear arrays
or cycles of processors. Our primary motivation is the re-
sults of [18] where earlier results due to Hsieh, Lin and
Huang [12] and to Wang, An, Pan, Wang and Qu [21] were
extended and the situation as regards the pancyclicity and
bipancyclicity ofQk

n was settled. Amongst other results, it
was shown thatQk

n is bipancyclic, whenn ≥ 2 andk ≥ 3,
andk-pancyclic, whenn ≥ 2 andk ≥ 3 is odd.

As more and more processors are incorporated into
parallel machines, faults become more common, be it faults
in the processors or on the connections between processors.
Of course, the temporary unavailability of a connection be-
tween two processors due to, for example, high traffic can
also be regarded as a fault. Given the significant cost of
parallel machines, we would prefer to be able to tolerate
(small numbers of) faults and still be able to use our paral-
lel machine. Whilst ‘static’ structural results such as those
mentioned above are important, we are interested here in
the tolerance ofk-aryn-cubes when a (limited) number of
edges are faulty (that is, are missing). In particular, we are
interested in how many faulty edgesQk

n can tolerate yet
still remain bipancyclic andk-pancyclic.

As thek-aryn-cubeQk
n has degree2n, an immediate

upper bound on the number of faulty edgesQk
n can tolerate

and still remain bipancyclic ork-pancyclic is clearly2n−2
(for we can make the edges from a vertex to2n − 1 of its
neighbours faulty and there clearly can be no cycle through
the vertex). Consequently, many studies assume the con-
ditional fault assumption on the distribution of the faults
so that no matter how many faulty edges there are, it is al-
ways the case that every vertex is incident with at least2
healthy edges (the legitimacy of this conditional fault as-
sumption is given credence as there is a very small proba-
bility that a configuration of faulty edges will be such as to
make a vertex of one of our networks have degree less than
2). For example, under this conditional fault assumption:
it was shown in [2] thatQk

n with 4n − 5 faulty edges still
has a Hamiltonian cycle (and that this result is optimal); it
was shown in [20] that ann-dimensional alternating group
graph with4n− 13 faulty edges still has a Hamiltonian cy-
cle (and that this result is optimal); it was shown in [15] that
ann-dimensional crossed cube with2n−5 faulty edges still
has a Hamiltonian cycle (and that this result is optimal);



and in [11] a more general consideration of matching com-
position networks was made with regard to whether they re-
main Hamiltonian under a limited number of faults. Other
Hamiltonicity results under our conditional fault assump-
tion are available in, for example, [6, 9, 10, 13, 14, 19].
As far as we are aware, [19] is the only paper to have con-
sidered pancyclicity issues in a family of interconnection
networks in the presence of faulty edges and under our con-
ditional fault assumption: in [19] it was proven that, under
our conditional fault assumption, ann-dimensional hyper-
cube with2n−5 faulty edges remains bipancyclic (and that
this result is optimal).

In this paper we begin the consideration of pancyclic-
ity in k-aryn-cubes under our conditional fault assumption
by resolving the situation fork-ary 2-cubes. In particular,
we prove that ak-ary 2-cubeQk

2 with 3 faulty edges but
where every vertex is incident with at least2 healthy edges
is bipancyclic, ifk ≥ 3, andk-pancyclic, ifk ≥ 5 is odd
(these results are optimal). Our results can be viewed as
providing the base case of any induction which might prove
a more general result fork-aryn-cubes wheren ≥ 2 is ar-
bitrary. In the next section we detail the basic definitions
relevant to this paper, and in Section 3 we prove our main
results. We give our conclusions, a conjecture in relation
to Qk

n whenn > 2, and directions for further research in
Section 4.

2 Basic definitions

For anyk ≥ 3 andn ≥ 1, a k-ary n-cube Qk
n has vertex

set{0, 1, . . . , k−1}n and there is an edge((un, un−1, . . . ,

u1), (vn, vn−1, . . . , v1)) if, and only if, |ui − vi| = 1 (mod
k), for somei ∈ {1, 2, . . . , n}, with uj = vj , for all
j ∈ {1, 2, . . . , n} \ {i}; such an edge is termed as lying in
dimension i (throughout, all arithmetic on the components
of vertices ofQk

n is modulok). A k1 × k2 torus has vertex
set{(u, v) : 0 ≤ u ≤ k1 − 1, 0 ≤ v ≤ k2 − 1} and there
is an edge((u1, u2), (v1, v2)) if, and only if, |ui − vi| = 1
(mod k), for somei ∈ {1, 2}, with uj = vj , for j 6= i.
We considerk-ary n-cubes and tori withfaulty edges; that
is, where certain edges are missing. Thus, afaulty k-aryn-
cube (resp. torus) is really just a copy ofQk

n (resp. a torus)
where some edges, the faulty edges, are missing, and where
we refer to the edges that remain as thehealthy edges. Even
though our faulty edges are regarded as missing edges, we
still say, for example, that a vertexv is incident with some
faulty edgee when the edgee was originally incident withv
before it was removed. On occasion, we temporarily make
faulty edges healthy or we want to emphasise that all edges
of some graph are healthy and so we say, for example, that
a cycle or a path is healthy.

A conditional fault assumption is an assumption re-
lating to the faults (in our case, faulty edges) and their dis-
tribution within an interconnection network (which for us
is always ak-ary n-cube). The conditional fault assump-
tion we make is that the distribution of faults is such that
no vertex in any faultyk-ary n-cube is ever incident with

less than2 healthy edges (that is, has degree less than2
when we regard our faultyk-ary n-cube as being ak-ary
n-cube with some edges missing).

A graph onn vertices is:pancyclic if it contains a cy-
cle of every length from3 up to n; andm-pancyclic if it
contains a cycle of every length fromm up ton. Of course,
no bipartite graph can be pancyclic (as there can be no odd
length cycles); consequently, a notion of pancyclicity has
been devised for bipartite graphs. A bipartite graph onn

vertices isbipancyclic if there is an even length cycle of
every even length from4 up to n. Even though the no-
tion of bipancyclicity has been devised to primarily apply
to bipartite graphs, it still makes sense to apply it to non-
bipartite graphs too. We shall be building cycles of various
lengths in faultyk-ary n-cubes. We say that a cycleC, of
lengthc, say, can beprogressively shortened to a cycle of
lengthc′, say, if starting fromC we can iteratively apply
the following construction to obtain cycles of all lengthsc,
c − 2, c − 4, down toc′: in the current cycleC′, replace a
sub-pathu, v, w, y of length3 with the edgeu, y to obtain
a cycle of length2 less than the length ofC′ (note that we
also describe a cycle in a graph as a sequence of vertices so
that consecutive vertices in the sequence are joined by an
edge in the cycle, as well as there being an edge from the
last vertex of the sequence to the first).

If π is a property of graphs then a graphG is said to be
m-edge-fault-tolerant π if G still has propertyπ even after
the removal of at mostm edges fromG. Thus, for example,
to say that ak-aryn-cubeQk

n is (4n−5)-edge-fault-tolerant
bipancyclic under the conditional fault assumption that no
vertex is incident with less than2 healthy edges means that
no matter which4n−5 edges we remove fromQk

n, so long
as no vertex in the resulting graph has degree less than2,
there is a cycle of every even lengthm where4 ≤ m ≤ kn.

A graphG is vertex-symmetric if given any two dis-
tinct verticesu andv of G, there is an automorphism of
G mappingu to v. Similarly, a graph isedge-symmetric
if given two distinct edgese and f of G (possibly inci-
dent), there is an automorphism ofG mappinge to f . The
k-aryn-cubeQk

n has a number of automorphisms. For ex-
ample, the maps(i, j) 7→ (i + 1, j), (i, j) 7→ (i, j + 1),
(i, j) 7→ (k − 1 − i, j), and(i, j) 7→ (i, k − 1 − j) are all
automorphisms ofQk

n.
The vertices ofQk

n are indexed byn-tuples of ele-
ments of{0, 1, . . . , k−1}. On occasion, we move fromQk

n

to Qk
n−1 and when we do we ‘project’ vertices along some

dimension. We use the notation(un−1, . . . , ûi, . . . , u1) to
denote the vertex(un−1, . . . , ui+1, ui−1, . . . , u1) of Qk

n−1.

3 Thek-ary 2-cubeQk

2

We prove a number of lemmas which, when put together,
will yield our main result.

Lemma 1 Consider a k-ary 2-cube Qk
2 , for some even k ≥

6, in which there are at most 3 faulty edges but where every



vertex is incident with at least 2 healthy edges. There is a
cycle of length l for every even l such that 4 ≤ l ≤ k2.

Proof There exists some dimension containing at least2
faulty edges, which w.l.o.g. we assume is dimension2. As
Qk

2 is edge-symmetric [1], w.l.o.g. we may assume that the
edge((0, 0), (k − 1, 0)) is faulty.

Case (i): all faulty edges lie in dimension2.

Consider the Hamiltonian cycle ofQk
2 as pictured in

Fig. 1 (although we have only drawn a Hamiltonian cycle in
Q8

2, the analogous cycle inQk
2 , for any evenk ≥ 6, should

be clear). This cycle, which we call the E-cycle rooted at
(0, 0), can be translated by simply increasing the first com-
ponent of every vertex by2, and yet another cycle can be
obtained by increasing the first component of every vertex
by 4. Note that the3 Hamiltonian cycles so obtained are
edge-disjoint when we consider only edges in dimension2
(ask ≥ 6). Thus, at least one of these Hamiltonian cycles
contains only healthy links; call itC. W.l.o.g. we may as-
sume thatC is the E-cycle rooted at(0, 0). We remark that
throughout the proof of this lemma, we never use edges of
the form((k − 1, i), (0, i)) and so we may simply ignore
the faulty edge((0, 0), (k − 1, 0)) and assume that we are
working in thek × k grid with wrap-around edges of the
form ((i, k − 1), (i, 0)), for i = 0, 1, . . . , k − 1.

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

Figure 1. A Hamiltonian cycle inQ8
2.

If our copy ofQk
2 had no faulty edges then we could

clearly progressively shortenC, by at each step removing
3 edges and including1 new edge, so that we obtain a cy-
cle of every even lengthl for which 4 ≤ l ≤ k2. How-
ever, in the process of progressively shortening our cycle,
we might try to include a new edge that is actually faulty
(note that we encounter at most2 faulty edges in our pro-
cess of progressive shortening). We deal with this situation
as follows. Our process of progressive shortening begins
by introducing edges in dimension2; so, with reference to
Fig. 1, we shorten our cycle ‘from the right-hand side’ (note
that there arek2 ≥ 3 ways in which we could do this). We
also ensure that we shorten the cycle in this way as much
as we can before having to deal with attempting to intro-
duce a faulty edge. If we try to introduce a faulty edge then
we simply ‘jump’ that particular iteration of our process of
progressive shortening and instead of shortening the cycle
by 2, we shorten the cycle by4, unless the next edge to be
introduced is faulty too, when we shorten the cycle by6.

Note that because of how we have chosen to progressively
shorten our cycle up until this point, we can simultaneously
lengthen our cycle by2 or4 (in a different part of the cycle)
to ensure that we obtain cycles of all the required lengths.
The process can be visualized in Fig. 2 where we have en-
countered a faulty edge in Fig. 2(a) and ‘jumped’ over it in
Fig. 2(b) as well as lengthening our cycle by2.

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

faulty edges

(a)

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

shortened by 4

lengthened by 2

(b)

Figure 2. The shortening process inQ8
2.

Case (ii): exactly2 faulty edges lie in dimension2.

By translating the E-cycle rooted at(0, 0) (as illustrated in
Fig. 1) by increasing the first component of every vertex
by 1, 2, and so on, w.l.o.g. we may assume that: we have
a Hamiltonian cycleC in Qk

2 that is the E-cycle rooted at
(0, 0); C contains no faulty edge in dimension2; andC

contains a faulty edge in dimension1 and this faulty edge is
one of{((i, k−4), (i, k−3)), ((i, k−3), (i, k−2)), ((i, k−
2), (i, k − 1))}, for somei ∈ {0, 1, . . . , k − 1}.

Depending upon where the dimension1 faulty edge
lies, we now amend our cycleC analogously to the illustra-
tion in Fig. 3(a) where: we remove the faulty edge and its
‘opposite’ on the same ‘branch’ of the E-cycle; we include
the two dimension2 edges which join the two edges just
removed; and we ‘join’ the resulting disconnected path to
the main cycle by removing a dimension2 edge and includ-
ing two dimension1 edges. What results is a Hamiltonian
cycleC each of whose edges is healthy, unless one of the
dimension2 edges we have tried to add is the dimension2
faulty edge (different from((0, 0), (k − 1, 0))).

(a)

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

amended cycle

faulty edges

(b)

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

faulty edges

Figure 3. Amending the cycle inQ8
2.

Assuming, for the moment, thatC consists entirely
of healthy edges, it can be progressively shortened just as



we did in Case (i), above (and possibly ‘jumping’ over the
faulty dimension2 edge, should it be encountered), so that
we obtain a cycle of lengthl for every evenl for which
4 ≤ l ≤ k2.

Alternatively, consider when one of the dimension2
edges introduced in the previous paragraph causes our con-
struction to fail. For the construction to fail, the dimension
1 faulty edge must be of the form((i, j), (i, j + 1)) and
the dimension2 faulty edge must be((i, j), (i + 1, j)) or
((i, j+1), (i+1, j+1)), if i is even, or((i, j), (i−1, j)) or
((i, j+1), (i−1, j+1)), if i is odd. W.l.o.g. we may assume
that the dimension1 faulty edge is((i, 0), (i, 1)), wherei is
even, and the dimension2 faulty edge is((i, 1), (i + 1, 1))
(by applying appropriate automorphisms of thek × k grid
with wrap-around edges). Hence, the E-cycle rooted at
(0, 0) consists entirely of healthy edges and can be pro-
gressively shortened just as we did in Case (i), above, so
that we obtain a cycle of lengthl for every evenl for which
4 ≤ l ≤ k2 (see Fig. 3(b)).

Lemma 2 Consider a 4-ary 2-cube Q4
2 in which there are

at most 3 faulty edges but where every vertex is incident
with at least 2 healthy edges. There is a cycle of length l

for every even l such that 4 ≤ l ≤ 16.

Proof There exists some dimension containing at least2
faulty edges, which w.l.o.g. we assume is dimension2.

Case (i): all faulty edges lie in dimension2.

For i = 0, 1, 2, 3, let Ci be the cycle((i, 0), (i, 1), (i, 2),
(i, 3)). Both edges of at least one of the edge-pairs

• {((0, 0), (1, 0)), ((0, 1), (1, 1))}

• {((0, 0), (3, 0)), ((0, 1), (3, 1))}

• {((0, 2), (1, 2)), ((0, 3), (1, 3))}

• {((0, 2), (3, 2)), ((0, 3), (3, 3))}

are healthy; thus, we can ‘join’C0 to C1 or C3, as appro-
priate and using these edges, to obtain a cycle of length8.
We can also ‘join’C0 to an edge ofC1 or C3, as appropri-
ate and using these edges, to obtain a cycle of length6 (see
Fig. 4 for an illustration of these constructions). By contin-
uing in the same way and using the same reasoning with the
resulting cycle of length8, we can ultimately obtain cycles
of every even length from4 up to16 as required.

(0,0)

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(0,3)

(a)

C 0

C 1

C 3

C 2

(0,0)

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(0,3)

(b)

C 0

C 1

C 3

C 2

Figure 4. Joining cycles in a faultyQ4
2.

Case (ii): exactly2 faulty edges lie in dimension2.

As Q4
2 is edge-symmetric [1], w.l.o.g. we may assume that

the edge((0, 0), (0, 1)) is faulty. If either ((0, 0), (1, 0))

and ((0, 1), (1, 1)) are both healthy or((0, 0), (3, 0)) and
((0, 1), (3, 1)) are both healthy then we may proceed as we
did in Case (i) and iteratively obtain cycles of all the re-
quired lengths. Thus, suppose that either((0, 0), (1, 0))
or ((0, 1), (1, 1)) is faulty and either((0, 0), (3, 0)) or
((0, 1), (3, 1)) is faulty. W.l.o.g. we may suppose that
the 3 faulty edges are((0, 0), (0, 1)), ((0, 0), (1, 0)), and
((0, 1), (3, 1)). The Hamiltonian cycle in Fig. 5 can clearly
be progressively shortened so that we obtain cycles of
lengths14, 12, 10, and8, and it is trivial to find cycles
of lengths6 and4. The result follows.

(0,0)

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(0,3)

Figure 5. A Hamiltonian cycle in a faultyQ4
2.

Lemma 3 Consider a k-ary 2-cube Qk
2 , for some odd k ≥

7, in which there are at most 3 faulty edges but where every
vertex is incident with at least 2 healthy edges. There is a
cycle of length l for every even l such that 4 ≤ l ≤ k2 − 1.

Proof There exists some dimension containing at least2
faulty edges, which w.l.o.g. we assume is dimension2. As
Qk

2 is edge-symmetric [1], w.l.o.g. we may assume that the
edge((0, 0), (k − 1, 0)) is faulty.

We begin by noting that the constructions in the proof
of Lemma 1 suffice to prove that in ak1 × k2 grid with
wrap-around edges of the form((i, k2 − 1), (i, 0)), for i =
0, 1, . . . , k1 − 1, where: k1 ≥ 6 is even;k2 ≥ 6 (with
k2 odd or even); and in which there are2 faulty edges, we
have cycles of all even lengthsl where4 ≤ l ≤ k1 · k2.
Note also that according to our constructions, if there is no
dimension1 faulty edge of the form((0, i), (0, i+1)) (resp.
((k−1, i), (k−1, i+1))) then the Hamiltonian cycle of the
k1×k2 grid with wrap-around edges contains a sub-path of
lengthk − 1 of vertices all of which are of the form(0, j)
(resp.(k − 1, j)).

We can consider such a wrap-around grid embedded
within Qk

2 by working with the subgraph induced by the
vertices of{(i, j) : 0 ≤ i ≤ k − 2, 0 ≤ j ≤ k − 1} or
the subgraph induced by the vertices of{(i, j) : 1 ≤ i ≤
k − 1, 0 ≤ j ≤ k − 1}. W.l.o.g., we may assume that our
wrap-around gridG is the subgraph induced by the vertices
of {(i, j) : 0 ≤ i ≤ k − 2, 0 ≤ j ≤ k − 1} and that: if
there is a faulty edge in dimension1 then this faulty edge
is of the form((i, j), (i, j + 1)), wherei ≤ k−1

2 ; and if
there is not a faulty edge in dimension1 then there is at
least one faulty edge of the form((i, j), (i + 1, j)), where
i ≤ k−1

2 . Thus, we have cycles inQk
2 of all even lengths

l where4 ≤ l ≤ (k − 1)k. All we need to do is to build
cycles of all even lengths from(k − 1)k + 2 up tok2 − 1.

There are two cases. First, suppose that both faulty
edges inQk

2 lie entirely withinG. As noted above, there
is a sub-path of lengthk − 1 in the Hamiltonian cycleC



of G consisting entirely of vertices of the form(k − 2, j).
W.l.o.g., suppose that this sub-path is(k − 2, 0), (k −
2, 1), . . . , (k − 2, k − 1). Let 1 ≤ l ≤ k−1

2 . In order to
obtain a cycle of length(k − 1)k + 2l we ‘join’ the edges
((k − 1, 0), (k − 1, 1)), ((k − 1, 2), (k − 1, 3)), . . . , ((k −
1, 2l − 2), (k − 1, 2l − 1)) to the cycleC just as we joined
an edge to a cycle in the proof of Lemma 2.

Alternatively, suppose that there is a dimension2
faulty edge of the form((k − 2, j), (k − 1, j)). This faulty
edge could invalidate the construction in the previous para-
graph. However, in this case our gridG contains only one
faulty edge, and the constructions of Lemma 1 can be used
to obtain a Hamiltonian cycleC in G so that if the sub-path
of C consisting entirely of vertices of the form(k−2, i) is,
w.l.o.g.,(k − 2, 0), (k − 2, 1), . . . , (k − 2, k − 1) thenj is
even. In such a situation we can proceed as we did in the
previous paragraph to obtain cycles of the required lengths
(the situation can be illustrated in Fig. 6). The result fol-
lows.

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

faulty edge ((5,4),(6,4))

grid G with wrap-around

Figure 6. Extending a cycle inQ7
2.

Lemma 4 Consider a 5-ary 2-cube Q5
2 in which there are

at most 3 faulty edges but where every vertex is incident
with at least 2 healthy edges. There is a cycle of length l

for every even l such that 4 ≤ l ≤ 24.

Proof There exists some dimension containing at least2
faulty edges, which w.l.o.g. we assume is dimension2.

Case (i): all faulty edges lie in dimension2.

As Q5
2 is edge-symmetric [1], w.l.o.g. we may assume that

the edge((0, 0), (4, 0)) is faulty. Suppose that2 faulty
edges are of the form((0, i), (1, i)); it is trivial to see
that in the subgraphG of Q5

2 induced by the vertices of
{(0, i), (1, i) : 0 ≤ i ≤ 4} there are cycles of lengths4,
6, 8, and10. Suppose that1 faulty edge is of the form
((0, i), (1, i)); it is trivial to see that in the subgraphG
there are3 different cycles of lengths4, 6, 8, and10, re-
spectively. Of course, the same holds true were we to con-
siderG to be the subgraph ofQ5

2 induced by the vertices
of {(j, i), (j + 1, i) : 0 ≤ i ≤ 4}, for anyj ∈ {0, 1, 2, 3}.
Armed with these observations, it is easy to ‘join’ cycles
and edges together, in the style of the proof of Lemma 2, to
obtain cycles of all even lengthsl where4 ≤ l ≤ 24.

Case (ii): exactly2 faulty edges lie in dimension2.

As Q5
2 is edge-symmetric [1], w.l.o.g. we may assume that

the edge((4, 0), (4, 4)) in dimension1 is a faulty edge.

If none of the dimension2 faulty edges is of the form
((3, i), (4, i)) then we can proceed as in Case (i) to con-
struct our required cycles.

Suppose that exactly1 of the dimension2 faulty
edges is of the form((3, i), (4, i)). If this faulty edge is
not incident with the faulty edge((4, 0), (4, 4)) then we
can start with the cycle(3, 0), (3, 1), (3, 2), (3, 3), (3, 4),
(4, 4), (4, 3), (4, 2), (4, 1), (4, 0) of length 10 and extend
this cycle, as we did in the proof of Case (i), to obtain cycles
of all even lengths up to24. Trivially, we can find cycles of
lengths4, 6, and8 in Q5

2. So, suppose w.l.o.g. that the edge
((3, 0), (4, 0)) is faulty. We can now proceed as we did in
Case (i) to obtain cycles of the required lengths.

Suppose that both the dimension2 faulty edges are of
the form ((3, i), (4, i)). If neither faulty edge is incident
with the faulty edge((4, 0), (4, 4)) then we can proceed as
in the previous paragraph (that is, start from the cycle of
length 10 described there and extend it, and find cycles
of lengths4, 6 and 8 elsewhere). So, w.l.o.g. suppose
that ((3, 0), (4, 0)) is a faulty edge. No matter where the
other dimension2 faulty edge lies, we can obtain a cycle
of length24 in Q5

2 as illustrated in Fig. 7 (the cycles corre-
sponding to the other3 possibilities for the location of the
second dimension2 faulty edge are constructed very simi-
larly). This cycle can be progressively shortened so that we
obtain cycles of all even lengths from10 to 24 in Q5

2, and
it is trivial to find cycles of lengths4, 6, and8 elsewhere in
Q5

2. The result follows.

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3) (0,4)

faulty edges

Figure 7. A cycle of length24 in Q5
2.

The proof of the following lemma is omitted as it can
easily be obtained by hand by a case-by-case analysis (and
the use of appropriate automorphisms).

Lemma 5 Consider a 3-ary 2-cube Q3
2 in which there are

at most 3 faulty edges but where every vertex is incident
with at least 2 healthy edges. There is a cycle of length l

for every even l such that 4 ≤ l ≤ 8.

We draw the lemmas of this section together in the
following corollary.

Corollary 6 Let k ≥ 3. Consider a k-ary 2-cube Qk
2 in

which there are at most 3 faulty edges but where every ver-
tex is incident with at least 2 healthy edges. There is a cycle
of length l for every even l such that 4 ≤ l ≤ k2.

Whenk is even then Corollary 6 is the best we can
do, in the sense that asQk

2 is bipartite, there cannot be any
cycle of odd length. However, whenk is odd we can say
more.



Lemma 7 Consider a k-ary 2-cube Qk
2 , where k ≥ 7 is

odd, in which there are at most 3 faulty edges but where
every vertex is incident with at least 2 healthy edges. There
is a cycle of length l for every odd l such that k ≤ l ≤ k2.

Proof Let us return to the proof of Lemma 3. The scenario
here is identical to as it was in Lemma 3. Consequently,
w.l.o.g. we can assume that:

• there are at least2 faulty edges in dimension2, one of
which is((0, 0), (k − 1, 0));

• if there is a faulty edge in dimension1 then this faulty
edge is of the form((i, j), (i, j + 1)), wherei ≤ k−1

2 ;

• if there is not a faulty edge in dimension1 then there
is at least one (dimension2) faulty edge of the form
((i, j), (i + 1, j)), wherei ≤ k−1

2 .

By following the constructions of Lemma 1, there is
a healthy cycleC of length(k − 1)k including every ver-
tex of {(i, j) : 0 ≤ i ≤ k − 2, 0 ≤ j ≤ k − 1}, as
well as a sub-path of lengthk − 1 containing all vertices of
{(k − 2, j) : 0 ≤ j ≤ k − 1}, that can be progressively
shortened, with ‘jumps’ over any dimension2 faulty edges
encountered (as in the proof of Lemma 1), so that a cycle
Cm of any even lengthm for which4 ≤ m ≤ (k − 1)k is
constructed. W.l.o.g. we may suppose thatC contains the
path(k − 2, 0), (k − 2, 1), . . . , (k − 2, k − 1) and that the
resulting cycleC4 of length4, obtained after progressively
shorteningC, is either:

• (k − 3, 0), (k − 3, 1), (k − 2, 1), (k − 2, 0) with the
edges((k − 1, 0), (k − 1, 1)), ((k − 2, 0), (k − 1, 0),
and((k − 2, 1), (k − 1, 1)) all healthy,

or

• (k − 3, 2), (k − 3, 3), (k − 2, 3), (k − 2, 2) with the
edges((k − 1, 2), (k − 1, 3)), ((k − 2, 2), (k − 1, 2),
and((k − 2, 3), (k − 1, 3)) all healthy,

Take any cycleCm of even lengthm, where4 ≤ m ≤
(k − 1)k, as just constructed. No matter which case above
occurs, we can clearly ‘join’ (in the sense of the proof of
Lemma 2) this cycleCm with the cycleD of lengthk de-
fined as(k − 1, 0), (k − 1, 1), . . . , (k − 1, k − 1) to obtain
a cycle of lengthm + k. Similarly, we can join the cy-
cle D with either the edge((k − 1, 0), (k − 1, 1)) or the
edge((k−1, 2), (k−1, 3)), as appropriate. The result now
follows.

Lemma 8 Consider a 5-ary 2-cube Q5
2 in which there are

at most 3 faulty edges but where every vertex is incident
with at least 2 healthy edges. There is a cycle of length l

for every odd l such that 5 ≤ l ≤ 25.

Proof The proof is similar to that of Lemma 4. There
exists some dimension containing at least2 faulty edges,
which w.l.o.g. we assume is dimension2.

Case (i): all faulty edges lie in dimension2.

As Q5
2 is edge-symmetric [1], w.l.o.g. we may assume

that the edge((0, 0), (4, 0)) is faulty. Let C0 be the cy-
cle (0, 0), (0, 1), (0, 2), (0, 3), (0, 4). As noted in the proof
of Lemma 4, in the subgraphG1 (resp. G2) of Q5

2 in-
duced by the vertices of{(1, i), (2, i) : 0 ≤ i ≤ 4} (resp.
{(3, i), (4, i) : 0 ≤ i ≤ 4}) there are cycles of lengths4,
6, 8, and10, irrespective of where the faulty edges lie, and
if at most one faulty edge lies inG1 (resp.G2) then there
are3 distinct cycles of lengths4, 6, 8, and10. Just as in the
proof of Lemma 4, we can easily joinC0 to appropriate cy-
cles or edges inG1 andG2 to obtain a cycle of odd length
l whenever5 ≤ l ≤ 25.

Case (ii): exactly2 faulty edges lie in dimension2.

As Q5
2 is edge-symmetric [1], w.l.o.g. we may assume that

the edge((4, 0), (4, 4)) in dimension1 is a faulty edge.
Suppose that neither((3, 0), (4, 0)) nor ((3, 4), (4, 4)) is a
faulty edge. By proceeding as in Case (i), we can clearly
build cycles of all odd lengths from5 up to17 in the sub-
graph ofQ5

2 induced by the vertices of{(i, j) : 0 ≤ i ≤
3, 0 ≤ j ≤ 4}. For longer cycles, we can joinC0, the
cycle(3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (4, 4), (4, 3), (4, 2),
(4, 1), (4, 0), and appropriate cycles in the subgraphG1

(defined in Case (i)) to yield cycles of all required lengths.
W.l.o.g. we may assume that either((3, 0), (4, 0)) or

((3, 4), (4, 4)) is a faulty edge and that either((0, 0), (4, 0))
or ((0, 4), (4, 4)) is a faulty edge. Further, w.l.o.g., we may
assume that((3, 0), (4, 0)) and ((0, 4), (4, 4)) are faulty
edges. Consider the Hamiltonian cycle inQ5

2 as depicted
in Fig. 8. This cycle can clearly be progressively shortened
to obtain cycles of all odd lengths from7 to 25. The result
follows.

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3) (0,4)

faulty edges

Figure 8. A cycle of length25 in Q5
2.

We bring all the results of this section together in the
following theorem.

Theorem 9 Consider a k-ary 2-cube Qk
2 in which there

are at most 3 faulty edges but where every vertex is inci-
dent with at least 2 healthy edges.

(a) If k ≥ 3 then Qk
2 is bipancyclic.

(a) If k ≥ 5 is odd then Qk
2 is k-pancyclic.

An equivalent formulation of the above result is that
Qk

2 is 3-edge-fault-tolerant bipancyclic, whenk ≥ 3, and
3-edge-fault-tolerantk-pancyclic, whenk ≥ 5 is odd, with



both results assuming the conditional fault assumption that
no vertex is incident with less than2 healthy edges.

Theorem 9 cannot be improved whenk is odd, for
it is not difficult to see that whenn ≥ 2, Qk

n has
no odd length cycles of length less thank (see also
[18]). Also, in Q3

2 there are configurations of3 faulty
edges so that even though every vertex is incident with
at least2 healthy edges, no Hamiltonian cycle exists (one
of these configurations is when the edges((0, 0), (0, 1)),
((0, 1), (0, 2)), and ((0, 2), (0, 0)) are faulty edges). We
also note that (as was explained in [2]) Corollary 6 is
optimal in the sense that there are configurations of4
faults in Qk

2 for which a Hamiltonian circuit does not ex-
ist, no matter what the value ofk (one such configura-
tion is the set of faults{((0, 0), (0, k − 1)), ((0, 0), (k −
1, 0)), ((1, 1), (1, 2)), ((1, 1), (2, 1))}).

4 Conclusion

In this paper we have established exactly when ak-ary 2-
cubeQk

2 remains bipancyclic ork-pancyclic in the presence
of 3 faulty edges and under the conditional fault assumption
that every vertex is incident with at least2 healthy edges.
We conjecture that under our conditional fault assumption,
for anyn ≥ 2, ak-aryn-cubeQk

n with 4n− 5 faulty edges
is bipancyclic, ifk ≥ 3, andk-pancyclic, ifk ≥ 5 is odd.
Thus, we have proven in this paper the base case of any
induction of this proof, and we hope to be able to deal with
the full induction in the near future.

Note that we have been solely concerned with exis-
tence proofs with regard to our properties of pancyclicity
or bipancyclicity in our faultyk-ary 2-cubes. We have
not considered the actual construction of any cycles, ei-
ther via a centralized sequential algorithm or a distributed
algorithm (implemented for a parallel machine whose un-
derlying topology is ak-ary2-cube; we refer the reader to
[17], and the references therein, for more on such construc-
tions). We believe it would be beneficial to consider the
actual construction of such cycles by an appropriate algo-
rithm. We note, however, that our constructions are very
uniform (with a lot of progressive shortening) and we con-
jecture that it will not be too difficult to devise efficient
(centralized and distributed) algorithms for cycle construc-
tion.

Related to pancyclicity and bipancyclicity are pan-
connectivity and bipanconnectivity. A graph of sizen is
panconnnected if given any two distinct verticesu andv at
a distanced(u, v) apart, there are paths of all lengths from
d(u, v) up ton − 1 joining u andv. A graph of sizen is
bipanconnnected if given any two distinct verticesu and
v at a distanced(u, v) apart, there are paths of all lengths
d(u, v)+2i joiningu andv wherei = 0, 1, . . . , ⌊n−d(u,v)

2 ⌋.
Often, pancyclicity and bipancyclicity results are immedi-
ate corollaries of panconnectivity and bipanconnectivityre-
sults; however, that is not the case here. It would be inter-
esting to examine the panconnectivity and bipanconnectiv-

ity of k-ary n-cubes under our conditional fault assump-
tion.

We have a closing remark in relation to the optimality
of results such as ours (whether there is a conditional fault
assumption or not). The optimality arguments come from
the fact that there are certain fault configurations which
prohibit a Hamiltonian cycle (or, at least, a cycle close
to Hamiltonian). When dealing with the fault-tolerance of
an interconnection network with respect to pancyclicity or
bipancyclicity, one could look to tolerate higher numbers
of faulty edges at the expense of not having long cycles.
For example, one could develop a notion of(m1, m2)-
pancyclicity (or (m1, m2)-bipanyclicity, for that matter)
where it is known that there are cycles of all lengths from
m1 up tom2. It would be interesting to investigate how the
parametersm1 andm2 fluctuate as more and more faulty
edges are introduced, both in the presence and absence of
our conditional fault assumption.
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