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Abstract

We prove that if P is a set of at most 2n − 1 edges in a k-ary n-cube, where

k ≥ 4 and n ≥ 2, then there is a Hamiltonian cycle on which every edge of P lies

if, and only if, the subgraph of the k-ary n-cube induced by the edges of P is a

vertex-disjoint collection of paths. This answers a question posed by Wang, Li and

Wang who proved the analogous result for 3-ary n-cubes.
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1 Introduction

A whole range of families of graphs have been proposed for use as intercon-
nection networks in the design of distributed-memory multiprocessors, where
the vertices of a graph represent the processors of a machine and the edges
between vertices the physical interconnections between processors. There
are numerous properties such a family of graphs should have in order to be
deemed suitable for such a purpose. For example, the graphs of such families
should have small diameter (so as to aid message latency), be recursively
decomposable (so as to aid scalability), have low degree (so as to lessen com-
munication overheads), have high connectivity (so as to aid fault tolerance
or data transfer), possess embeddings of other standard graphs (so as to aid
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simulations) and so on. The study of families of graphs suitable for use as
interconnection networks has motivated new purely graph-theoretic research
where the properties under consideration are relevant to the intended usage
of these graphs in the context of parallel computation. Unfortunately the
properties one might require are so diverse that there does not exist a family
of graphs possessing every one of these properties and in practice trade-offs
have to be made. Perhaps the most ubiquitous family of graphs in the land-
scape of interconnection networks are the hypercube Qn and its close relation
the k-ary n-cube Qk

n (of course, such graphs are also common-place across
discrete mathematics in general). The reader is referred to, for example,
[6] for more on the relationship between graph theory and interconnection
networks.

The study of Hamiltonian cycles in graphs is widespread. The basic
problem of deciding whether an arbitrary graph has a Hamiltonian cycle
is one of the canonical NP-complete problems, and there has been much
research into restrictions upon arbitrary graphs under which this problem
becomes solvable in polynomial-time. With respect to graphs used as in-
terconnection networks, if such a graph possesses a Hamiltonian cycle then
this cycle can, for example, easily be utilized so that all-to-all broadcasts can
be accomplished and ring-based simulations undertaken (in the underlying
distributed-memory multiprocessor). Many of the families of graphs used
as interconnection networks possess Hamiltonian cycles: for instance, it has
long been known that hypercubes [7] and k-ary n-cubes do [2].

Whilst the question of existence of Hamiltonian cycles in graphs such
as hypercubes and k-ary n-cubes becomes a non-event, the question of effi-
ciently constructing Hamiltonian cycles (especially using distributed-memory
multiprocessors whose interconnection network is the graph in question) is
still pertinent as is the consideration of additional impositions under which
Hamiltonian cycles still exist. These impositions are usually related to avoid-
ing or prescribing specific edges. For example, Chan and Lee [4] showed that
an n-dimensional hypercube with at most 2n− 5 ‘faulty links’ (that is, with
at most 2n− 5 edges missing) but where every vertex has degree at least 2,
still has a Hamiltonian cycle but that there exist such faulty hypercubes with
2n − 4 faulty links (but so that every vertex has degree at least 2) that do
not possess a Hamiltonian cycle. Ashir and Stewart [1] proved an analogous
result for k-ary n-cubes with at most 4n − 5 faulty links. Chan and Lee
also showed that it is NP-complete to decide whether a hypercube with an
arbitrary set of faulty links is Hamiltonian [4], with Ashir and Stewart doing
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likewise for k-ary n-cubes [1].
However, it is with the prescription of specific vertices that we are con-

cerned in this paper, which is, in some sense, complementary to edge avoid-
ance. With regard to hypercubes, Caha and Koubek [3] proved that if the
dimension n of a hypercube is at least 3 then for any set P of at most n− 1
edges, there is a Hamiltonian cycle on which every edge of P lies if, and only
if, the subgraph of the hypercube induced by the edges of P is a vertex-
disjoint collection of paths. This result was extended by Dvořák [5] who
showed that it holds when P consists of 2n− 3 edges and that this result is
optimal (in that there are sets of 2n−2 edges in an n-dimensional hypercube
where the subgraph induced by these edges consists of vertex-disjoint paths
but where there does not exist a Hamiltonian cycle upon which all of these
edges lie). Consequently, Dvořák’s result provides a precise classification as
to when prescribed edges are guaranteed to lie upon a Hamiltonian cycle in
a hypercube. Recently, Wang, Li and Wang [9] have embarked upon classi-
fying when prescribed edges are guaranteed to lie upon a Hamiltonian cycle
in a k-ary n-cube. Their result states that if P is a set of at most 2n − 1
edges in a 3-ary n-cube, where n ≥ 2, then there is a Hamiltonian cycle on
which every edge of P lies if, and only if, the subgraph of the 3-ary n-cube
induced by the edges of P is a vertex-disjoint collection of paths. They make
no comment as regards whether the number of edges in P can be increased so
that the statement still holds (though they show that their result is optimal
for n = 2) and pose the question of what happens in k-ary n-cubes when
k ≥ 4 as an open problem which we answer in this paper. In particular, we
prove here that if P is a set of at most 2n− 1 edges in a k-ary n-cube, where
n ≥ 2 and k ≥ 4, then there is a Hamiltonian cycle on which every edge of
P lies if, and only if, the subgraph of the k-ary n-cube induced by the edges
of P is a vertex-disjoint collection of paths.

We give the basic definitions and results relevant to this paper in Section 2
and prove our result for n = 2 in Section 3. In Section 4, we prove our result
(by induction) for n ≥ 3 (using the result in Section 3 as the base case). Our
conclusions and directions for further research are given in Section 5.

2 Basic definitions and results

For n ≥ 1 and k ≥ 3, the k-ary n-cube Qk
n is the graph whose vertex set is

{(un, un−1, . . . , u1) : ui ∈ {0, 1, . . . , k − 1}, for i ∈ {1, 2, . . . , n}} and whose
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edge set consists of those pairs ((un, un−1, . . . , u1), (vn, vn−1, . . . , v1)) where
there exists some d ∈ {1, 2, . . . , n} such that ui = vi, whenever i 6= d, and
either ud = vd + 1 or ud = vd − 1, with addition and subtraction modulo
k (throughout this paper we assume that addition and subtraction on the
components of vertices of Qk

n is always modulo k). A path in some graph is
a sequence of distinct vertices written (x1, x2, . . . , xm), for some m ≥ 1, so
that (xi, xi+1) is an edge, for i ∈ {1, 2, . . . , m − 1}. The vertices x1 and xm

of the path (x1, x2, . . . , xm) are its terminal vertices , with all other vertices
(when m ≥ 3) its internal vertices . A path in a graph is maximal if it cannot
be extended to a longer path in the graph. A cycle is a path (x1, x2, . . . , xm),
for some m ≥ 3, for which we also have that (xm, x1) is an edge. Although
a path and the corresponding cycle are written identically as sequences of
vertices, it is always apparent as to whether we are referring to the sequence
as a path or as a cycle.

Consider Qk
n, where n ≥ 2. Fix some d ∈ {1, 2, . . . , n}. For any i ∈

{0, 1, . . . , k− 1}, consider those vertices of Qk
n whose dth component is fixed

at i. It is trivial to see that the subgraph of Qk
n induced by these vertices

is isomorphic to Qk
n−1. We denote this subgraph by Qi (when n, k and d

are understood). We say that Q0, Q1, . . . , Qk−1 are formed by partitioning

Qk
n over dimension d. Note that any vertex x of Qi has a corresponding

vertex, denoted nj(x), in Qj, for j ∈ {0, 1, . . . , k − 1}, where nj(x) is identi-
cal to x as a k-bit-string except that the dth component is equal to j. The
vertex x = ni(x) is a neighbour of ni−1(x) and ni+1(x) in Qk

n (with addi-
tion and subtraction on the indices modulo k), and the subgraph induced
by the vertices of {x} ∪ {nj(x) : j ∈ {0, 1, . . . , k − 1} \ {i}} is the cycle
(n0(x), n1(x), . . . , ni−1(x), x, ni+1(x), . . . , nk−1(x)). Any edge of Qk

n that is
not in Q0, Q1, . . . , Qk−1 is said to lie in dimension d. Let G be some subgraph
of Qi and let G′ be the subgraph of Qj , where j 6= i, induced by the edges
of {(x, y) : (x, y) is an edge of Qj such that (ni(x), ni(y)) is an edge of G}.
The graph G′ is clearly isomorphic to G and is said to be the isomorphic

copy of G in Qj . Let X be a set of edges of Qk
n. We write 〈X〉 to denote the

subgraph induced by the edges of X . If every edge of X lies in some Qi then
the isomorphic copy of X in Qj , where i 6= j, is the set of edges X ′ so that
〈X ′〉 is the isomorphic copy of 〈X〉 in Qj. We shall be interested in specific
sets of edges in Qk

n which we denote by P . We write Pj to denote those edges
of Qj that are in P , for j ∈ {0, 1, . . . , k − 1}. Edges in P \ ∪k−1

i=0Pi clearly lie
in dimension d.

Suppose that we have partitioned Qk
n over some dimension d to get
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Q0, Q1, . . . , Qk−1 and we have a specific set of edges P . If (x, y) is an edge
of Qi then we say that the cycle (x, ni+1(x), ni+1(y), y) is a bridge join-

ing Qi and Qi+1. Of course, (ni+1(x), ni(ni+1(x)), ni(ni+1(y)), ni+1(y)) =
(ni+1(x), x, y, ni+1(y)) is the same bridge. We shall be interested in bridges
with certain properties. Let (x, ni+1(x), ni+1(y), y) be a bridge joining Qi and
Qi+1. We say that this bridge is right-useable if

1. (ni+1(x), ni+1(y)) 6∈ Pi+1

2. ni+1(x) and ni+1(y) are not terminal vertices on some maximal path of
〈Pi+1〉 of length at least 2

3. both ni+1(x) and ni+1(y) are incident with at most 1 edge of Pi+1.

Note that if 〈Pi+1〉 consists of a set of vertex-disjoint paths and the bridge
(x, ni+1(x), ni+1(y), y) is right-useable then by conditions 2 and 3 of the def-
inition of right-useability, 〈Pi+1 ∪ {(ni+1(x), ni+1(y))}〉 consists of a set of
vertex-disjoint paths also. Our bridge is left-useable if (x, y) 6∈ Pi, x and y

are not terminal vertices on some maximal path of 〈Pi〉 of length at least
2, and both x and y are incident with at most 1 edge of Pi. Our bridge
is useable if it is both left-useable and right-useable (the relevance of these
definitions will be made clear later). We shall use bridges to build larger
cycles out of smaller cycles as follows. Suppose that Ci is a cycle in Qi and
Ci+1 is a cycle in Qi+1 so that (x, y) is an edge of Ci and (ni+1(x), ni+1(y))
is an edge of Ci+1. The cycle D formed by removing the edges (x, y) and
(ni+1(x), ni+1(y)) from Ci and Ci+1, respectively, and including the edges
(x, ni+1(x)) and (y, ni+1(y)) is said to have been formed by joining Ci and

Ci+1 using the bridge (x, ni+1(x), ni+1(y), y). We also say that D has been
formed by extending Ci or Ci+1.

The following result will prove very useful.

Theorem 1 [8] Let k ≥ 3 be odd and let n ≥ 2. Given any two distinct
vertices x and y of Qk

n, there exists a Hamiltonian path from x to y.

Our primary motivation in this paper is the following result due to Wang,
Li and Wang.

Theorem 2 [9] Let n ≥ 2 and let P be any set of 2n− 1 edges in Q3
n. The

3-ary n-cube Q3
n has a Hamiltonian cycle on which every edge of P lies if,

and only if, 〈P 〉 consists of pairwise vertex-disjoint paths.
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3 The base case

We begin by proving our main result but only for Qk
2 where k ≥ 4.

Theorem 3 Let k ≥ 4 and let P be a set of 3 edges in Qk
2. The k-ary 2-cube

Qk
2 has a Hamiltonian cycle on which every edge of P lies if, and only if, 〈P 〉

consists of pairwise vertex-disjoint paths (that is, 〈P 〉 is not a triangle or a
star with 3 radii).

Proof W.l.o.g. we may assume that there are at least 2 edges of P in dimen-
sion 1. Partition Qk

2 over dimension 2 so as to obtain cycles Q0, Q1, . . . , Qk−1,
with Pj the set of edges of P that lie in Qj , for j ∈ {0, 1, . . . , k − 1}.

Consider Q0 and Q1. Suppose that all 3 edges of P lie in Q0 or Q1 or join
a vertex in Q0 to a vertex in Q1. As we show below, irrespective of where the
edges of P lie, as k ≥ 4 we can obtain a cycle D01 spanning the vertices in Q0

and Q1 such that D01 contains all edges of P0 ∪ P1 as well as any dimension
2 edge joining a vertex in Q0 and a vertex in Q1, except in one situation
(Case 2.d in Fig. 2) where we have a path as opposed to a cycle. W.l.o.g.
the different situations are depicted as follows.

Case 1: There exists 1 edge of P in dimension 2 and |P0| = 2.

The essential cases are illustrated in Fig. 1 (where edges of P are represented
using dashed lines).

Q
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...

...

...

...

...

Q
1

Q
0

...

...

...

...

Q
1

......

edges 

of P0

edge 

in dim 2

Case 1.a Case 1.b

Figure 1: 1 edge in dimension 2 and |P0| = 2.
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Case 2: There exists 1 edge of P in dimension 2 and |P0| = |P1| = 1.

The essential cases are illustrated in Fig. 2. Note the special case, Case 2.d,
where the edges of P lie as shown and k ≥ 5 is odd, where we have a path
spanning the vertices of Q0 and Q1 (and containing all edges of P ) as opposed
to a cycle.
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Q
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Q
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Q
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of P0

edges 

in dim 2
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of P1

Q
0
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Q
1

Case 2.a Case 2.dCase 2.cCase 2.b

even k odd k

Figure 2: 1 edge in dimension 2 and |P0| = |P1| = 1.

Case 3: There exists no edge of P in dimension 2.

The essential cases are illustrated in Fig. 3.

Of courses, by symmetry our observations above apply to any pair Qi and
Qi+1, for i ∈ {1, 2, . . . , k − 1}, and not just Q0 and Q1. Also, we can apply
the above constructions even when the number of edges of P in Qi or Qi+1

or joining a vertex of Qi with a vertex of Qi+1 is less than 3.
W.l.o.g. we may suppose that if there is a dimension 2 edge then this

edge joins a vertex in Q0 with a vertex in Q1.
If k ≥ 4 is even then we can build cycles as above spanning: Q0 and Q1;

Q2 and Q3; . . .; and Qk−2 and Qk−1. We can join, for example, a cycle D01

spanning the vertices of Q0 and Q1 with a cycle D23 spanning the vertices of
Q2 and Q3 using a bridge (x, n1(x), n1(y), y) where (x, y) is an edge of D01

not in P and (n1(x), n1(y)) is an edge of D23 not in P . It is not difficult to
see that no matter what the configuration of edges of P , we can iteratively
choose and join our cycles together to obtain a Hamiltonian cycle of Qk

2 on
which every edge of P lies.
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Figure 3: no edges in dimension 2.

Suppose that k ≥ 5 is odd and that the edges of P do not form the
configuration as in Case 2.d in Fig. 2. As k ≥ 5, either: there is no dimension
2 edge and there is some Qj containing no edges of P , for j ∈ {0, 1, . . . , k−1};
or there is some Qj containing no edges of P , where j ∈ {2, 3, . . . , k − 1}.
In both cases, form pairs Qi and Qi+1, where i 6= j 6= i + 1, as in the
previous paragraph, and build cycles spanning the vertices of Qi and Qi+1

and containing all edges of P that are in Qi or Qi+1 or join a vertex in Qi

with a vertex in Qi+1 (in the latter case, we ensure that Q0 and Q1 are paired
together). In both cases, it is not difficult to see that we can always join these
cycles together, as in the previous paragraph, to obtain a cycle spanning all
vertices of Qi, for i ∈ {0, 1, . . . , k − 1} \ {j}, and containing all edges of P .
We can then join this cycle to Qj using an appropriate bridge.

Thus, all that remains is the case when k ≥ 5 is odd and the edges of P
form the configuration in Case 2.d of Fig. 2. Let the path ρ spanning the
vertices of Q0 and Q1 as constructed in Case 2.d of Fig. 2 go from vertex
x of Q0 to vertex y of Q1. Concatenate to ρ the edge (y, n2(y)), then the
path of length k− 1 from n2(y) to n2(x) in Q2, then the edge (n2(x), n3(x)),
then the path of length k − 1 from n3(x) to n3(y) in Q3, . . ., then the edge
(nk−2(y), nk−1(y)), then the path of length k − 1 from nk−1(y) to nk−1(x),
and then the edge (nk−1(x), x). The resulting cycle is a Hamiltonian cycle of
Qk

2 and contains all edges of P .
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4 The main result

In this section we prove our main result, namely Theorem 4. The proof of
Theorem 4 is by induction, with Theorem 3 forming the base case.

Theorem 4 Let n ≥ 2, let k ≥ 4 and let P be a set of edges of Qk
n with

|P | ≤ 2n − 1. There exists a Hamiltonian cycle of Qk
n on which every edge

of P lies if, and only if, 〈P 〉 consists of pairwise vertex-disjoint paths.

Proof Note that because k ≥ 4, we may assume that Qk
n contains no cycles

of length 3. We proceed by induction on n. As our induction hypothesis,
suppose that n ≥ 3 and that whenever we have a set P ′ of at most 2n − 3
edges of Qk

n−1, there exists a Hamiltonian cycle of Qk
n−1 on which every edge

of P ′ lies if, and only if, 〈P ′〉 consists of pairwise vertex-disjoint paths. The
base case of our induction follows by Theorem 3. Let P be a set of at most
2n− 1 edges in Qk

n. If Q
k
n has a Hamiltonian cycle containing every edge of

P then trivially 〈P 〉 consists of pairwise vertex-disjoint paths. So, assume
that 〈P 〉 consists of pairwise vertex-disjoint paths.

There exists some dimension d such that at most 1 edge of P lies in
dimension d. Partition Qk

n over dimension d to obtain the k-ary (n − 1)-
cubes Q0, Q1, . . . , Qn−1, with Pj consisting of those edges of P that lie in
Qj , for j ∈ {0, 1, . . . , k − 1}. W.l.o.g. assume that |P0| ≥ |Pj|, for j ∈
{1, 2, . . . , k − 1}. There are two essential cases: when there is 1 edge in
dimension d; and when there are no edges in dimension d. However, we
begin with two useful lemmas.

Lemma 5 Let X be a set of edges in Qi where 〈X〉 consists of a set of
vertex-disjoint paths or cycles. Let the set of edges X ′ be the set of edges
of Qi+1 isomorphic to X . The number of right-useable bridges of the form
(x, ni+1(x), ni+1(y), y) joining Qi and Qi+1, where (x, y) ∈ X , is at least
max{|X| − |X ′ ∩ Pi+1| − 2|Pi+1|, 0}.

Proof Throughout this proof, by a bridge we mean a bridge of the form
(x, ni+1(x), ni+1(y), y), where (x, y) ∈ X .

Consider some edge f ∈ Pi+1. If f ∈ X ′ then this makes the bridge
containing f not right-useable: so, |X ′ ∩ Pi+1| bridges are not right-useable
because condition 1 of the definition of right-useability fails.

Suppose that the edge f ∈ X ′ \ Pi+1 is such that its 2 incident vertices
are the terminal vertices of a maximal path of 〈Pi+1〉 of length at least 2. As
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there are no cycles of length 3, this path must have length at least 3. Thus,
if α is the number of vertex-disjoint maximal paths in 〈Pi+1〉 of length at
least 3 then at most α bridges are not right-useable because condition 2 of
the definition of right-useability fails.

Consider some edge f ∈ X ′ \Pi+1 where its 2 incident vertices are not the
terminal vertices of a maximal path of 〈Pi+1〉 of length at least 2. However,
suppose that the bridge involving f is still not right-useable. So, one of
its incident vertices is incident with 2 edges of Pi+1: that is, this vertex is
an internal vertex of some maximal path in 〈Pi+1〉. As 〈X ′〉 is such that
every vertex has degree at most 2, any such internal vertex renders at most 2
bridges not right-useable. Hence, the maximum number of bridges rendered
not right-useable because condition 3 of the definition of right-useability fails
is at most 2(|Pi+1| − β), where β is the number of vertex-disjoint maximal
paths in 〈Pi+1〉.

Consequently, the total number of bridges rendered not right-useable is
at most |X ′ ∩ Pi+1|+ α+ 2(|Pi+1| − β) ≤ |X ′ ∩ Pi+1|+ 2|Pi+1|.

Lemma 6 Let D be a cycle spanning all vertices of Qi, Qi+1, . . . , Ql, for
some i and l (with possibly i = l), where

• |Pj| ≤ 2n− 4, for j ∈ {0, 1, . . . , k − 1} \ {i, i+ 1, . . . , l}

• D contains all edges of Pi ∪ Pi+1 ∪ . . . ∪ Pl as well as any dimension d

edge of P that might happen to join vertices of Qi, Qi+1, . . . , Ql

• there are no edges of P lying in dimension d and incident with a vertex
from Qj , for j ∈ {0, 1, . . . , k − 1} \ {i, i+ 1, . . . , l}

• the number of edges of D lying in Qi is greater than 6n− 9.

The cycle D can be extended to a Hamiltonian cycle of Qk
n containing every

edge of P .

Proof Let X be the set of edges of D lying in Qi and let X ′ be the isomor-
phic copy of X in Qi−1. By Lemma 5, there are at least max{|X| − |X ′ ∩
Pi−1|−2|Pi−1|, 0} left-useable bridges joining D and Qi−1. Moreover, at least
max{|X|− |X ′∩Pi−1|− |X ∩Pi|−2|Pi−1|, 0} = max{|X|− (2n−1)−2(2n−
4), 0} = max{|X| − 6n+ 9, 0} > 0 of these bridges are such that the edge of
the bridge lying in Qi is not in Pi.
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Let (u, u′, v′, v) be such a left-useable bridge joining the edge (u, v) of D
lying in Qi to the edge (u′, v′) of Qi−1. By the induction hypothesis applied
to (Pi−1 ∪ {(u′, v′)}, Qi−1) (see the remark immediately after the definition
of right-useability), there exists a Hamiltonian cycle Ci−1 in Qi−1 containing
every edge of Pi−1 as well as the edge (u′, v′). Join D and Ci−1 using the
bridge (u, u′, v′, v) to obtain a cycle spanning the vertices of Qi−1, Qi, . . . , Ql

and containing every edge of Pi−1 ∪ Pi ∪ . . . ∪ Pl as well as any dimension d

edge of P that might happen to join vertices of Qi, Qi+1, . . . , Ql. Proceeding
iteratively in this way (noting that kn−1−1 > 6n−9 and repeatedly applying
Lemma 5) yields the result (the process can be visualised as in Fig. 4).

u

v' v

u'

D

...

i-1C
i-2C

left-useable 

bridges

Figure 4: Extending the cycle D.

Case (a): |P \ ∪k−1
i=0Pi| = 1.

Let the edge of P that is not in ∪k−1
i=0 Pi be e = (x, y).

Lemma 7 Suppose that x lies in Qi, y lies in Qi+1 and both |Pi| and |Pi+1|
are at most 2n − 4. There exists a cycle D spanning all vertices of Qi and
Qi+1 that contains every edge of Pi∪Pi+1∪{e} and is such that only 2 edges
of D do not lie in Qi or Qi+1 (one of which is e) with these 2 edges being
part of a bridge joining Qi and Qi+1.

Proof Let x′ be a neighbour of x in Qi with y′ the corresponding neighbour
of y in Qi+1 (so y′ = ni+1(x

′)). Consider the bridge (x, x′, y′, y). Suppose
that this bridge is useable. We can apply the induction hypothesis to (Pi ∪
{(x, x′)}, Qi) and to (Pi+1∪{(y, y′)}, Qi+1) and obtain Hamiltonian cycles Ci

and Ci+1 of Qi and Qi+1, respectively, so that Ci contains every edge of Pi,
as well as (x, x′), and Ci+1 contains every edge of Pi+1, as well as (y, y

′). We
can join Ci and Ci+1 using the bridge (x, x′, y′, y) to obtain a cycle D as in
the statement of the lemma.

Suppose that the bridge (x, x′, y′, y) is not useable. So, as x is incident
with at most 1 edge of Pi and at most 1 edge of Pi+1, we must have (at least)
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one of the following six occurrences: (x, x′) ∈ Pi; x and x′ are the terminal
vertices of some maximal path in 〈Pi〉 of length at least 2; x′ is incident with
at least 2 edges of Pi; (y, y

′) ∈ Pi+1; y and y′ are the terminal vertices of
some maximal path in 〈Pi+1〉; y

′ is incident with at least 2 edges of Pi+1.
Let us count the maximal number of bridges joining Qi and Qi+1 involving
x that are rendered not useable due to the edges of Pi, i.e., not left-useable.
As x is incident with at most 1 edge of Pi, at most 1 bridge of the form
(x, x′′, y′′, y) is rendered not useable because (x, x′′) ∈ Pi or because x and
x′′ are the terminal vertices of some maximal path in 〈Pi〉 of length at least
2. Alternatively, if a bridge of the form (x, x′, y′, y) is rendered not useable
because x′ is incident with at least 2 edges of Pi then x′ must be some internal
vertex of a maximal path of 〈Pi〉.

• Suppose that there exists an edge (x, x′′) ∈ Pi. This leaves at most
|Pi| − 2 internal vertices of paths in 〈Pi〉 that might be used to render
bridges involving x not useable.

• Suppose that x and x′′ are the terminal vertices of some maximal path
in 〈Pi〉 of length at least 2. Consider the vertex z of this path adjacent
to x′′. The vertex z cannot be adjacent to x as Qk

n has no cycles of
length 3. Thus, the (internal) vertex z (of our path) cannot be used to
render a bridge involving x not useable, and this leaves at most |Pi|−2
internal vertices of maximal paths in 〈Pi〉 that can.

• Suppose that there does not exist an edge (x, x′′) ∈ Pi nor is it the
case that there exists a neighbour x′′ of x in Qi such that x and x′′ are
the terminal vertices of some maximal path in 〈Pi〉 of length at least 2.
The maximal number of internal vertices of paths in 〈Pi〉 that can be
used to render a bridge involving x not useable is at most |Pi| − 1.

Consequently, the maximal number of bridges involving x rendered not use-
able because of edges of Pi is at most |Pi|−1. The same goes for the edges of
Pi+1. Thus, as: there are 2n− 2 bridges involving x; at most |Pi|+ |Pi+1| − 2
of these bridges are not useable; and |Pi|+ |Pi+1| ≤ 2n−1, at least one bridge
must be useable. The result follows.

Suppose that |P0| ≤ 2n − 4. By Lemmas 6 and 7 (noting that kn−1 −
1 > 6n − 9), there is a Hamiltonian cycle in Qk

n containing all edges of P .
Henceforth, we assume that |P0| ≥ 2n− 3.
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Lemma 8 Suppose that x is a vertex of Q0, y is a vertex of Q1 and |P0| =
2n− 3. There is a Hamiltonian cycle in Qk

n containing all edges of P .

Proof By the induction hypothesis applied to (P0, Q0), there is a Hamilto-
nian cycle in Q0 containing all edges of P0. Let x

′ and x′′ be the neighbours
of x on C0, with y′ and y′′, respectively, their neighbours in Q1. W.l.o.g.
(x, x′) 6∈ P0 (as (x, y) ∈ P ). Consider the bridge (x, y, y′, x′). If (y, y′) 6∈ P1

then apply the induction hypothesis to (P1∪{(y, y′)}, Q1) to obtain a Hamil-
tonian cycle C1 in Q1 that contains all edges of P1 as well as (y, y′). We can
join C0 and C1 using the bridge (x, y, y′, x′) to obtain a cycle spanning all
vertices of Q0 and Q1 and containing all edges of P0 ∪ P1 ∪ {e}. The result
follows by Lemma 6.

So, suppose that (y, y′) ∈ P1: that is, P1 = {(y, y′)} and ∪k−1
j=2Pj =

∅. Let C ′

1 be the isomorphic copy of C0 in Q1. In particular, C ′

1 contains
(y, y′). Consider the path obtained by starting from y′′ and traversing C ′

1

to y (omitting (y′′, y)), taking the edge (y, x), and then traversing C0 to x′

(omitting (x, x′)). Clearly this path contains every vertex of Q0 and Q1 as
well as every edge of P0 ∪ P1 ∪ {e}, i.e., P . Extend this path by the edges
(y′′, n2(x

′′)) and (x′, nk−1(x
′)) to obtain the path ρ.

If k = 5 then we can, first, apply Theorem 1 three times to obtain Hamil-
tonian paths in Q2, Q3 and Q4 from n2(x

′′) to n2(x
′), from n3(x

′′) to n3(x
′),

and from n4(x
′′) to n4(x

′), respectively, and, second, easily compose these
paths with ρ to obtain a Hamiltonian cycle in Q5

n containing all edges of P .
Indeed, by proceeding similarly, we can obtain a Hamiltonian cycle in any
Qk

n containing all edges of P whenever k ≥ 5 is odd.
Suppose that k = 4. Applying the induction hypothesis to ({(n2(x

′′),
n2(x))}, Q2) and to ({(n3(x

′), n3(x))}, Q3) yields Hamiltonian cycles C2 and
C3 in Q2 and Q3, respectively: that is, Hamiltonian paths in Q2 from n2(x

′′)
to n2(x) and in Q3 from n3(x

′) to n3(x). These paths can easily be composed
with ρ to obtain a Hamiltonian cycle in Q4

n containing all edges of P . When
k ≥ 6 is even, we proceed similarly by applying the induction hypothesis to
({(n2(x

′′), n2(x))}, Q2) and to ({(nj(x
′), nj(x))}, Qj), if 3 ≤ j ≤ k−1, before

composing the resulting paths. The result follows.

Lemma 9 Suppose that x is a vertex of Qi, y is a vertex of Qi+1 and |P0| =
2n− 3, where i 6= 0 6= i+ 1. There is a Hamiltonian cycle in Qk

n containing
all edges of P .
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Proof As in the proof of Lemma 7, there is a useable bridge (x, y, y′, x′)
joining Qi and Qi+1. Let the edge of P \ (P0 ∪ {e}) be (p, q). By the
induction hypothesis applied to (P0, Q0), there is a Hamiltonian cycle C0 in
Q0 containing every edge of P0. The cycle C0 contains kn−1 − (2n− 3) ≥ 13
edges not in P0.

Choose two non-incident edges (u, v) and (s, t) of C0 that are not in P0

where {u, v, s, t} ∩ {n0(x), n0(x
′), n0(p), n0(q)} = ∅. Applying the induction

hypothesis to (Pi ∪ {(x, x′), (ni(u), ni(v))}, Qi) yields a Hamiltonian cycle
in Qi containing all edges of Pi as well as (x, x′) and (ni(u), ni(v)). Ap-
plying the induction hypothesis to (Pj ∪ {(nj(u), nj(v)), (nj(s), nj(t))}, Qj),
for j ∈ {2, 3, . . . , i − 1}, yields a Hamiltonian cycle Cj in Qj containing
all edges of Pj as well as (nj(u), nj(v)) and (nj(s), nj(t)). We can join Ci

and Ci−1 using the bridge (ni(u), ni−1(u), ni−1(v), ni(v)), and then using
the bridge (nj(u), nj−1(u), nj−1(v), nj(v)) or (nj(s), nj−1(t), nj−1(t), nj(s)),
for j ∈ {1, 2, . . . , i − 1}, as appropriate, we can join the Hamiltonian cycles
C0, C1, . . . , Ci so as to obtain a cycle D spanning all vertices of Q0, Q1, . . . , Qi

and containing all edges of P0 ∪ P1 ∪ . . . ∪ Pi.
Applying the induction hypothesis to (Pi+1 ∪ {(y, y′)}, Qi+1) yields a

Hamiltonian cycle in Qi+1 containing all edges of Pi+1 as well as (y, y′). We
can joinD and Ci+1 using the bridge (x, y, y

′, x′) to obtain a cycle spanning all
vertices ofQ0, Q1, . . . , Qi+1 and containing all edges of P0∪P1∪. . .∪Pi+1∪{e}.
This cycle can be extended to a Hamiltonian cycle in Qk

n containing all edges
in P by Lemma 6.

Suppose that |P0| = 2n− 3. By Lemmas 8 and 9, there is a Hamiltonian
cycle in Qk

n containing all edges of P . Henceforth, we assume that |P0| =
2n− 2.

There are two possibilities: x is a vertex of Q0 and y is a vertex of Q1; x
is a vertex of Qi, where i 6= 0, and y is a vertex of Qi+1, where i+ 1 6= 0.

Lemma 10 Suppose that x is a vertex of Q0, y is a vertex of Q1 and |P0| =
2n− 2. There is a Hamiltonian cycle in Qk

n containing every edge of P .

Proof As x is incident with at most 1 edge of P0, let (a, b) be some edge
of P0 that is not incident with x. Applying the induction hypothesis to
(P0 \ {(a, b)}, Q0) results in a Hamiltonian cycle C0 in Q0 containing every
edge of P0\{(a, b)}. Suppose that C0 also contains (a, b). Let x

′ and x′′ be the
neighbours of x on C0, with y′ and y′′, respectively, their neighbours in Q1.

14



W.l.o.g. (x, x′) 6∈ P0 (as (x, y) ∈ P ). Consider the bridge (x, y, y′, x′). Apply
the induction hypothesis to ({(y, y′)}, Q1) to obtain a Hamiltonian cycle C1 in
Q1 that contains (y, y

′). We can join C0 and C1 using the bridge (x, y, y′, x′)
to obtain a cycle spanning all vertices of Q0 and Q1 and containing all edges
of P . The result follows by Lemma 6.

So, suppose that (a, b) 6∈ P0. Let a
′ and a′′ be the neighbours of a on C0,

and let b′ and b′′ be the neighbours of b on C0. Moreover, assume that there
is a sub-path of C0 joining to a′ to b′ on which x does not lie. Let x′ be the
neighbour of x on C0 so that x′ does not lie on the sub-path of C0 from x

to a avoiding b, and let x′′ be the other neighbour of x on C0. W.l.o.g. we
may assume that (x, x′) 6∈ P0 (as (x, y) ∈ P ). Note that a′ 6= b′ as otherwise
there would be a cycle of length 3 in Qk

n. However, it may be the case that
x′ = b′′, x′ = b, x′′ = a′′ or x′′ = a.

There are 4 different essential cases to consider depending upon whether
or not the edges (a, a′) and (b, b′) are in P0. Some of these cases have sub-
cases. All cases and their sub-cases are described below and illustrated in
Fig. 5.

1. If (a, a′) 6∈ P0 and (b, b′) 6∈ P0 then

– define ρ1 to be the sub-path of C0 from x to a avoiding b, concate-
nated with (a, b), concatenated with the sub-path of C0 from b to
x′ avoiding a

– define ρ2 to be the sub-path of C0 from a′ to b′ avoiding a.

2.a If (a, a′) 6∈ P0, (b, b
′) ∈ P0 and b′′ 6= x′ 6= b then

– define ρ1 to be the sub-path of C0 from a′ to b avoiding a, con-
catenated with (b, a), concatenated with the sub-path of C0 from
a to x avoiding b

– define ρ2 to be the sub-path of C0 from b′′ to x′ avoiding x.

Note that (b, b′′) 6∈ P0.

2.b If (a, a′) 6∈ P0, (b, b
′) ∈ P0 and b′′ = x′ then

– define ρ1 to be the sub-path of C0 from x to a avoiding b, concate-
nated with (a, b), concatenated with the sub-path of C0 from b to
a′ avoiding a.
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Note that this path does not include x′ = b′′ and that (b, x′) 6∈ P0.

2.c If (a, a′) 6∈ P0, (b, b
′) ∈ P0 and x′ = b then

– define ρ1 to be the sub-path of C0 from x to a avoiding b, concate-
nated with (a, b), concatenated with the sub-path of C0 from b to
a′ avoiding a.

3.a If (a, a′) ∈ P0, (b, b
′) 6∈ P0 and a′′ 6= x then

– define ρ1 to be the sub-path of C0 from x′ to b avoiding a, con-
catenated with (b, a), concatenated with the sub-path of C0 from
a to b′ avoiding b

– define ρ2 to be the sub-path of C0 from x to a′′ avoiding a.

Note that (a, a′′) 6∈ P0.

3.b If (a, a′) ∈ P0, (b, b
′) 6∈ P0 and a′′ = x then

– define ρ1 to be the sub-path of C0 from b′ to a avoiding b, con-
catenated with (a, b), concatenated with the sub-path of C0 from
b to x avoiding a.

Note that (a, a′′) 6∈ P0.

4.a If (a, a′) ∈ P0, (b, b
′) ∈ P0, x

′′ 6= a and x′ 6= b′′ then let (c, d) 6∈ P0 be
an edge on the sub-path of C0 joining a′ and b′ avoiding a so that c is
closer to a′ on this path than d is and

– define ρ1 to be the sub-path of C0 from c to a avoiding b, concate-
nated with (a, b), concatenated with the sub-path of C0 from b to
d avoiding a

– define ρ2 to be the sub-path of C0 from x to a′′ avoiding a

– if x′ 6= b then define ρ3 to be the sub-path of C0 from x′ to b′′

avoiding a.

Note that both (a, a′′) and (b, b′′) are not in P0.
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4.b If (a, a′) ∈ P0, (b, b
′) ∈ P0, x

′′ 6= a and x′ = b′′ then let (c, d) 6∈ P0 be
an edge on the sub-path of C0 joining a′ and b′ avoiding a so that c is
closer to a′ on this path than d is and

– define ρ1 to be the sub-path of C0 from c to a avoiding b, concate-
nated with (a, b), concatenated with the sub-path of C0 from b to
d avoiding a

– define ρ2 to be the sub-path of C0 from x to a′′ avoiding a.

Note that these paths do not include x′ = b′′ and that both (a, a′′) and
(b, b′′) are not in P0.

4.c If (a, a′) ∈ P0, (b, b
′) ∈ P0 and x′′ = a then let (c, d) 6∈ P0 be an edge

on the sub-path of C0 joining a′ and b′ avoiding a so that c is closer to
a′ on this path than d is and

– define ρ1 to be the sub-path of C0 from c to a avoiding b, concate-
nated with (a, b), concatenated with the sub-path of C0 from b to
d avoiding a

– define ρ2 to be the sub-path of C0 from x to b′′ avoiding a.

Note that both (a, a′′) and (b, b′′) are not in P0, and that x′ 6= b as
otherwise there would be a cycle of length 3 in Qk

n.

Consider Case 1. Let ρ′1 and ρ′2 be the isomorphic copies of ρ1 and ρ2,
respectively, in Q1. Join ρ1 and ρ′1 using the edges (a′, n1(a

′)) and (b′, n1(b
′))

to form the cycle D1, and join ρ2 and ρ′2 using the edges (x, y) and (x′, n1(x
′))

to form the cycle D2. Every edge of P lies on one of these cycles. Take any
edge f of D1 lying within Q1 and any edge g of D2 lying within Q1, and let
f ′ and g′ be the isomorphic copies of f and g, respectively, in Q2. By the
induction hypothesis applied to ({f ′, g′}, Q2), there is a Hamiltonian cycle
C2 in Q2 containing f ′ and g′. Join D1 and D2 to C2 using the bridges
involving f and f ′ and g and g′, respectively. We obtain a cycle spanning all
vertices of Q0, Q1 and Q2 and containing all edges of P . We can extend this
cycle to a Hamiltonian cycle of Qk

n containing all edges of P by Lemma 6 (as
kn−1− 2 > 6n− 9). Analogous constructions apply in Cases 2.a, 2.c, 3.a, 3.b
and 4.c.
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Figure 5: The different cases for the edge (a, b).

We are left with Cases 2.b, 4.a and 4.b. Consider Case 2.b. Let ρ′1 be
the isomorphic copy of ρ1 in Q1. Join ρ1 and ρ′1 using the edges (x, y) and
(a′, n1(a

′)) to form the cycle D.
Suppose that k is even. For every j ∈ {2, 3, . . . , k−1}, apply the induction

hypothesis to ({(nj(x
′), nj(x)), (nj(x), nj(x

′′))}, Qj) to obtain a Hamiltonian
cycle Cj in Qj upon which both edges (nj(x

′), nj(x)) and (nj(x), nj(x
′′))

lie. For j ∈ {2, 3, . . . , k − 1}, let πj by the sub-path of Cj from nj(x
′)

to nj(x) of length kn−1 − 1. Form the cycle D′ by starting from the path
(x′, n1(x

′), n2(x
′)), concatenating π2, concatenating the edge (n2(x), n3(x)),

concatenating the path π3, concatenating the edge (n3(x
′), n4(x

′)), concate-
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nating π4, . . ., concatenating the edge (nk−2(x), nk−1(x)), concatenating the
path πk−1 and finally concatenating the edge (nk−1(x

′), x′). The cycles D and
D′ span all vertices of Qk

n. Join D and D′ using the bridge (y, n2(x), n2(x
′′),

n1(x
′′)) to obtain a Hamiltonian cycle of Qk

n containing all edges of P (note
that neither (y, n1(x

′′)) nor (n2(x), n2(x
′′)) lies in P ). The construction can

be visualised as in Fig. 6. There is an analogous construction for Case 4.b
except that instead of one cycle D we have two cycles D1 and D2, formed
by composing the paths ρ1 and ρ′1 and the paths ρ2 and ρ′2, respectively. We
build the cycle D′ as we did before except that when building D′ we ensure
that all Hamiltonian cycles Cj, for j ∈ {2, 3, . . . , k − 1}, contain the edges
of {(nj(x

′), nj(x)), (nj(x), nj(x
′′)), (nj(a), nj(b))}. We join D1 and D using

the bridge (n1(a), n2(a), n2(b), n1(b)) and the resulting cycle to D2 using the
bridge (y, n2(x), n2(x

′′), n1(x
′′)).
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Figure 6: Case 2.b when k is even.

Suppose that k is odd. Let ρ′′1 be the isomorphic copy of ρ1 in Q2. For
every j ∈ {3, 4, . . . , k − 2}, we use Lemma 1 to obtain a Hamiltonian path
πj in Qj from nj(a

′) to nj(x). We use Lemma 1 to obtain a Hamiltonian
path πk−1 in Qk−1 from nk−1(x) to nk−1(x

′). We build the cycle D′ by start-
ing from the path (x′, n1(x

′), n2(x
′)), concatenating the edge (n2(x

′), n2(x)),
concatenating the path ρ′′1, concatenating the edge (n2(a

′), n3(a
′)), concate-

nating the path π3, concatenating the edge (n3(x), n4(x)), concatenating the
path π4, concatenating the edge (n4(a

′), n5(a
′)), concatenating the path π5,

. . ., concatenating the edge (nk−2(x), nk−1(x)), concatenating the path πk−1

and concatenating the edge (nk−1(x
′), x′). The cycles D and D′ span all

vertices of Qk
n. Join D and D′ using the bridge (y, n2(x), n2(x

′′), n1(x
′′)) to

obtain a Hamiltonian cycle of Qk
n containing all edges of P (note that neither

(y, n1(x
′′)) nor (n2(x), n2(x

′′)) lies in P ). There is an analogous construction
for Case 4.b except that instead of one cycle D we have two cycles D1 and
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D2, formed by composing the paths ρ1 and ρ′1 and the paths ρ2 and ρ′2, re-
spectively. We build the cycle D′ as we did before except that when building
D′ we ensure that: the Hamiltonian path π2 in Q2 is the sub-path of length
kn−1 − 1 of the isomorphic copy of C0 in Q2 from n2(x

′) to n2(b); the Hamil-
tonian paths πj in Qj are from nj(b) to nj(x), for j ∈ {3, 4, . . . , k − 2}; and
the Hamiltonian path πk−1 in Qk−1 is from nk−1(x) to nk−1(x

′). We join
D1 and D′ using the bridge (n1(a), n2(a), n2(a

′), n1(a
′)), and we join the re-

sulting cycle with D2 using the bridge (y, n2(x), n2(x
′′), n1(x

′′)) to obtain a
Hamiltonian cycle of Qk

n containing all edges of P . The construction can be
visualised as in Fig. 7.
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Figure 7: Case 4.b when k is odd.

Finally, consider Case 4.a. Let ρ′1, ρ
′

2 and ρ′3 be the isomorphic copies
of ρ1, ρ2 and ρ3, respectively, in Q1. Join corresponding pairs (as we have
done earlier) to form three cycles D1, D2 and D3, respectively, which span
all vertices of Q0 and Q1. Choose an edge fi of Di that lies in Q1 and let f ′

i

be the isomorphic copy in Q2, for i = 1, 2, 3. Apply the induction hypothesis
to ({f ′

1, f
′

2, f
′

3}, Q2) to obtain a Hamiltonian cycle D in Q2 containing f ′

1, f
′

2

and f ′

3. Join D to D1, D2 and D3 using the corresponding bridge to obtain
a cycle D′ spanning all vertices of Q1, Q2 and Q3 and containing all edges of
P . The result follows by Lemma 6.

Lemma 11 Suppose that x is a vertex of Qi and y is a vertex of Qi+1 where
i 6= 0 6= i + 1. Suppose that |P0| = 2n− 2. There is a Hamiltonian cycle in
Qk

n containing every edge of P .
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Proof Let (p, q) be some edge of P0. By the induction hypothesis applied
to (P \ {(p, q)}, Q0), there is a Hamiltonian cycle C0 in Q0 containing every
edge of P0 \ {(p, q)}. If (p, q) lies in C0 then let D be the cycle C0.

Suppose that (p, q) does not lie on C0. There are two possibilities: we
have a Hamiltonian path ρ1 in Q0 (a sub-path of C0) containing all edges of
P0; or we have two vertex-disjoint (non-trivial) paths ρ1 and ρ2 in Q0 (sub-
paths of C0) which span all vertices of Q0 and contain all edges of P0 (see
the diagrams in Case 1 and Case 2.a in Fig. 5). In the first case, let ρ′1 be
the isomorphic copy of ρ1 in Q1 and let D be the cycle spanning all vertices
of Q0 and Q1 obtained by joining ρ1 and ρ′1. In the second case, let ρ′1 and
ρ′2 be the isomorphic copies of ρ1 and ρ2, respectively, in Q1, and let D1 and
D2 be the cycles obtained by joining ρ1 and ρ′1 and by joining ρ2 and ρ′2,
respectively, so that the cycles D1 and D2 span the vertices of Q0 and Q1.
Now choose some edge f1 of D1 that lies in Q1 and some edge f2 of D2 that
lies in Q1, ensuring that f1 is incident with x if x lies in Q1. Let f ′

1 and f ′

2

be the isomorphic copies of f1 and f2, respectively, in Q2. By the induction
hypothesis applied to ({f ′

1, f
′

2}, Q2), there is a Hamiltonian cycle C2 in Q2

containing f ′

1 and f ′

2. Join D1 and D2 to C2 using the bridges involving f1
and f ′

1 and f2 and f ′

2, respectively, to obtain a cycle D.
Whatever the situation, we have a cycle D that contains every edge of

P0 (and possibly the remaining edge of P ). We iteratively work through the
remaining k-ary (n − 1)-cubes not yet spanned by the cycle D and, using
the induction hypothesis, extend D so that we ensure that the edge (x, y)
appears in the extension of D (we do this as we did in the last paragraph by
always choosing the bridge by which we extend so that it contains (x, y)).
The result follows.

Suppose that |P0| = 2n−1. By Lemmas 10 and 11, there is a Hamiltonian
cycle in Qk

n containing all edges of P .

Case (b): P = ∪k−1
i=0 Pi.

Suppose that |P0| ≤ 2n−3. By the induction hypothesis applied to (P0, Q0),
there is a Hamiltonian cycle C0 in Q0 containing every edge of P0. The result
follows by Lemma 6.

Suppose that |P0| = 2n − 2. Let (p, q) be some edge of P0. By the
induction hypothesis applied to (P0 \ {(p, q)}, Q0), there is a Hamiltonian
cycle C0 of Q0 containing every edge of P0 \ {(p, q)}. If (p, q) lies on C0 then
set D = C0.
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Suppose that (p, q) does not lie on C0. There are two possibilities: we
have a Hamiltonian path ρ1 in Q0 (a sub-path of C0) containing all edges of
P0; or we have two vertex-disjoint (non-trivial) paths ρ1 and ρ2 in Q0 (sub-
paths of C0) which span all vertices of Q0 and contain all edges of P0. In
the first case, w.l.o.g. we may assume that P1 = ∅ (otherwise work in Qk−1).
Let ρ′1 be the isomorphic copy of ρ1 in Q1. Let D be the cycle spanning all
vertices of Q0 and Q1 obtained by joining ρ1 and ρ′1. In the second case,
w.l.o.g. we may assume that P1 = ∅. Let ρ′1 and ρ′2 be the isomorphic copies
of ρ1 and ρ2, respectively, in Q1. Let D1 and D2 be the cycles obtained
by joining ρ1 and ρ′1 and ρ2 and ρ′2, respectively. Again, w.l.o.g. we may
assume that P2 = ∅. Choose edges f1 and f2 in Q1 that lie in D1 and D2,
respectively, and let f ′

1 and f ′

2 be the isomorphic copies of f1 and f2 in Q2.
By the induction hypothesis applied to ({f ′

1, f
′

2}, Q2), there is a Hamiltonian
cycle C2 in Q2 containing f ′

1 and f ′

2. Join D1, D2 and C2 using the bridges
involving f1 and f ′

1 and f2 and f2′ to obtain the cycle D.
Whatever the situation, we obtain the result using Lemma 6.
Suppose that |P0| = 2n − 1. Let e and f be two edges of P0. Applying

the induction hypothesis to (P0 \ {e, f}, Q0) yields a Hamlitonian cycle C0

of Q0 containing every edge of P0 \ {e, f}. Suppose that C0 contains at least
one of e and f also. Now we proceed exactly as we did in the case above
when |P0| = 2n − 2 and the edge (p, q) does not lie on (the previous cycle)
C0. Doing so, and then applying Lemma 6, yields the result. Hence, we may
assume that both e and f do not appear in C0. Consider e. Suppose that
there is an edge of P0 lying on C0 and incident with e. Let e′ and e′′ be the
edges of the maximal path ρ′ of 〈P0〉 containing e that are incident with the
terminal vertices of ρ′. Reapply the induction hypothesis to (P0\{e

′, e′′}, Q0)
to obtain a Hamiltonian cycle C ′

0 of Q0 containing every edge of P0 \ {e
′, e′′}.

As above, we may assume that neither e′ nor e′′ lies on C ′

0. Let ρ be the sub-
path of C ′

0 joining the terminal vertices of ρ′ and which contains no other
vertex of ρ′. Let the terminal vertex of ρ′ incident with e′ (resp. e′′) be c′

(resp. c′′), and let d′ (resp. d′′) be the other vertex incident with e′ (resp.
e′′). W.l.o.g. we may assume that there is a sub-path of C ′

0 from c′ to d′

on which neither c′′ nor d′′ appears (in the alternative situation we proceed
almost identically). There are 3 cases: |ρ| = 1; |ρ| = 2; and |ρ| > 2. These
sub-cases can be visualised as in Fig. 8 (note that the sub-path ρ′ \ {e′, e′′}
might consist of one vertex only). Note that none of the edges of C ′

0 incident
with c′ or c′′ are in P0 and that all edges of ρ′, apart from e′ and e′′, lie on C ′

0.
Let a (resp. b) be the vertex of the sub-path of C ′

0 from c′ to d′ (resp. c′′ to
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d′′) and avoiding c′′ (resp. c′) that is adjacent to d′. In all cases, let ρ1 be the
path starting with the sub-path of C ′

0 from a to c′ avoiding b, concatenated
with the path ρ′, and concatenated with the sub-path of C ′

0 from c′′ to b

avoiding a. If |ρ| = 2 then let x be the solitary internal vertex of ρ, and
if |ρ| > 2 then let the vertex of ρ adjacent to c′ (resp. c′′) be x (resp. y).
We now proceed essentially as we did in Case 2.c, Case 2.b and Case 1 of
Lemma 10, as appropriate, to obtain the result.

edges not in P0
ρ
1

|ρ| = 1

e'
e''

ρ

ρ'\{e', e''}

edges not in P0
ρ
1

|ρ| = 2

e'
e''

ρ'\{e', e''}

edges not in P0
ρ
1

|ρ| > 2

e'
e''

ρ'\{e', e''}

ρ ρ

ρ
2

a aa

b bb

c' c'c'
c'' c''c''

x
x y

d' d'd'

d'' d'' d''

Figure 8: The case when |P0| = 2n− 1.

Hence, we may assume that we have a Hamiltonian cycle C0 of Q0 con-
taining all edges of P0 \ {e, f} so that the edges e and f do not lie on C0 and
are such that neither e nor f is incident with an edge of C0 lying on P0. We
proceed as above depending upon which of the situations as in Fig. 8 occurs.
The result follows.

5 Conclusions

In this paper, we have shown that we can build a Hamiltonian cycle in a
k-ary n-cube so that up to 2n − 1 prescribed edges can be guaranteed to
be on the cycle if, and only if, these edges induce a subgraph consisting of
a vertex-disjoint collection of paths. A simple induction shows that we can
select a set P of 4n − 2 edges in Qk

n, where n ≥ 2 and k ≥ 3, so that 〈P 〉
consists of a set of vertex-disjoint paths and there exists a vertex x of Qk

n so
that all but 1 of x’s neighbours in Qk

n are incident with exactly 2 edges of
P . Thus, the maximal size of a set P of edges of Qk

n for which a version of
Theorem 3 or Theorem 4 holds is at most 4n− 3. It would be interesting to
establish exactly where between 2n − 1 and 4n − 3 this threshold lies. We
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expect that given the more complex structure of the k-ary n-cube, the exact
threshold will be much more difficult to obtain than it was for the hypercube.

As we mentioned earlier, there has been a significant amount of research
undertaken as regards the necessity of the existence of Hamiltonian cycles in
hypercubes and k-ary n-cubes either avoiding or containing prescribed sets
of edges of a given size. The general question of given a set of edges of a
hypercube or a k-ary n-cube (with no bound on the size of the set), does there
exist a Hamiltonian cycle containing these edges, has yet to be considered
as regards its computational complexity. It could well be that the proof of
related complexity-theoretic results from [1, 4] will provide an entry point
into such an investigation.

Finally, hypercubes and k-ary n-cubes are not the only Hamiltonian
graphs used as interconnection networks. There are many other such Hamil-
tonian graphs including, for example, star graphs, (n, k)-star graphs, pancake
graphs, crossed cubes, twisted cubes and Möbius cubes (see, for example, [6]).
It would be interesting to consider some of these graphs as to the existence
of Hamiltonian cycles through prescribed edges as we have done here.
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[5] T. Dvořák, Hamiltonian cycles with prescribed edges in hypercubes,
SIAM Journal on Discrete Mathematics 19 (1) (2005) 135–144.

24



[6] L.-H. Hsu and C.-K. Lin, Graph Theory and Interconnection Networks ,
CRC Press (2009).
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