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Abstract

We build a framework within which we can define a wide range of Cayley graphs
of semidirect products of abelian groups, suitable for use as interconnection net-
works and which we call toroidal semidirect product graphs. Our framework
encompasses various existing interconnection networks such as cube-connected
cycles, recursive cubes of rings, cube-connected circulants and dual-cubes, as
well as certain multiswapped networks, pruned tori and biswapped networks; it
also enables the construction of new hitherto uninvestigated but highly struc-
tured interconnection networks. We go on to design an efficient shortest-path
routing algorithm that can be applied to any graph that can be defined within
our framework. Our algorithm runs in time that is polylogarithmic in the size
of the base group and polynomial in the size of the extending group of the given
semidirect product. We also obtain analytic upper bounds on the diameters of
our toroidal semidirect product graphs.

Keywords: interconnection networks, Cayley graphs, abelian groups,
semidirect products, shortest path routing

1. Introduction

We begin with an explanation, for the uninitiated, why discrete mathematics
has a role to play in the design of interconnection networks for parallel and
distributed computing before highlighting the contributions of this paper.

1.1. Background

In a modern parallel or distributed computing system, such as a system-on-a-
chip, a supercomputer or a data centre, the various individual components, such
as processors, switches or servers, are interconnected via a point-to-point com-
munications network. In order to support efficient communication, this network
needs to possess a wide range of properties relating to, e.g., message routing,
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message latency, message broadcasting, data throughput, scalability, fault tol-
erance, load balancing and ease of implementation. Some of these properties
can work against each other which makes the design of these communications
networks challenging. Moreover, because of their scale and cost, parallel or dis-
tributed computing systems cannot simply be built and tested; the efficiency of
their communications networks needs to be validated prior to construction.

The abstraction of such a communications network as a graph is known as
an interconnection network . More precisely, interconnection networks come in
families in order to support scalability; that is, the facility to move to a larger
network of the same type but so as to retain the same fundamental (point-to-
point) routing algorithm. The standard example of a family of interconnection
networks is the hypercubes (and their associated dimensional routing algorithm;
see, e.g., [11]). Henceforth, by an interconnection network we mean a family of
graphs (or possibly just an individual family member) specifically designed to
support communication in parallel or distributed computing systems.

Regarding validation, it has long been recognised that certain mathemat-
ical properties of interconnection networks serve as good proxies for eventual
performance. For example: the diameter of an interconnection network serves
as a proxy for worst-case message latency; the bisection width can be used to
estimate data throughput (under certain traffic patterns); high connectivity pro-
vides a framework for building fault-tolerant routing algorithms; multiple and
judicious tree embeddings support message broadcasting and load balancing;
and bounded degree assists with ease and cost of implementation. In addition,
symmetry in an interconnection network, such as vertex-transitivity or edge-
transitivity, is extremely beneficial when it comes to underpinning a range of
performance-related properties. For instance, if we build a parallel or distributed
system whose corresponding interconnection network is vertex-transitive then
we can employ the same routing algorithm at any processor within the network
and a rooted sub-network can be embedded so that any vertex can be chosen as
the root. Examples of specific technical results relating to symmetry are: if an
interconnection network is vertex-transitive (resp. regular and edge-transitive)
then its edge-connectivity (resp. connectivity) is equal to its degree (and so is
maximal; see [25, 26, 27, 35, 36]).

Whilst the study of interconnection networks is strongly motivated by their
applications as communications networks, this study has its roots and a strong
continued presence within discrete mathematics where structured graphs are
investigated primarily as combinatorial objects (indeed, the study of many
modern-day interconnection networks simply as graphs within discrete math-
ematics precedes the advent of computer communication). By ‘structured’ we
mean graphs that can be described in a succinct way rather than via an ad-
jacency matrix, say. Again, the hypercubes provide a good illustration: an
n-dimensional hypercube has 2n vertices yet there is an O(n)-time algorithm
that given two vertices, that is, bit-strings of length n, outputs whether there
is an edge joining these vertices. Such structured graphs are often built us-
ing combinatorial constructions such as graph products, typical of which are
the cartesian, strong, direct, lexicographic, replacement and zig-zag products (a
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glimpse at mathematical research on product graphs can be found in, e.g., [17]).
Moreover, some of the combinatorial properties of interest with regard to struc-
tured graphs are inspired by, if not necessarily immediately directly relevant to,
those of interconnection networks (see, e.g., [16, 17, 22]).

Suffice it to say, a plethora of interconnection networks has been proposed
over the past fifty years or so (see, e.g., [19, 40]), the majority of which are
defined using (product) constructions of discrete mathematics. As might be
expected from our discussion above, Cayley graphs have featured heavily in in-
terconnection network design, and continue to do so, for the algebra provides a
means for succinct description and any Cayley graph is vertex-transitive (though
not necessarily edge-transitive) which, as we hinted earlier, has many benefits
in an interconnection network context. We refer the reader to the review pa-
pers [18, 20] for more on Cayley graphs and their relevance as interconnection
networks and also note some more recent examples of research involving Cayley
graphs in relation to interconnection network design: in a consideration of the
structural properties of data centre interconnection networks with reference to
universal routing schemes, it was shown in [10] that every Cayley graph has
large hyperbolicity (hyperbolicity is a parameter that, intuitively, compares the
metric space of a graph with the metric space of a tree); in [1], the computation
of various paths in Cayley graphs was undertaken using automata theory (in
the style of automatic groups [15]); and in [41], the generalized 3-connectivity
of various classes of Cayley graphs was considered (generalized k-connectivity
is a refined graph connectivity measure). These examples have been chosen as
they involve path computation in Cayley graphs, as does our research; however,
the general area encompassed by Cayley graphs and interconnection networks
is thriving. In summary, not only are we interested in graph products but we
are also interested in groups as mechanisms by which to design interconnection
networks.

To sum up: we wish to build families of structured graphs that possess
symmetry as well as myriad other properties supporting their use as communi-
cations networks; we want to use and develop tools and techniques from discrete
mathematics to assist us; and we want to mathematically investigate a variety
of properties of structured graphs purely as combinatorial objects.

1.2. Our contributions

In this paper, we are inspired by the extremely interesting construction by
Mokhtar in [28] of the cube-connected circulants CQn(d, r,m), where n ≥ 2,
d, r ≥ 3 and m are positive integers such that n ≥ d and dr ≡ 0 (mod n) (we
define these graphs precisely later, as we do for all graphs mentioned in this
introduction). The cube-connected circulants were in turn inspired by cube-
connected cycles (due to Preparata and Vuillemin [30]) and recursive cubes of
rings (due to Sun, Cheung and Lin [34] and subsequently refined by Mokhtar
and Zhou [29]). The nature of these graphs is that they are ‘hybrid’, built as a
‘product’ of two other graphs; of course, the intention is to benefit by melding
the attractive properties of both of the intrinsic graphs. In brief, cube-connected
cycles are ‘products’ of cycles and hypercubes, as are recursive cubes of rings,
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and cube-connected circulants are ‘products’ of multiplicative circulants and
hypercubes. In order to make precise these vague notions of ‘product’, all these
graphs can be defined as Cayley graphs of groups formed as semidirect products
of direct products of cyclic groups by (that is, acted on by) cyclic groups.

Our first contribution is to rigorously generalize the construction of cube-
connected cycles so that the class of ‘constituent graphs’ (corresponding to the
multiplicative circulants in CQn(d, r,m)) is much broader as is the class of
‘shape graphs’ (corresponding to the hypercubes in CQn(d, r,m)). However,
our graphs continue to be described as Cayley graphs of a semidirect product
of two (abelian) groups. We call our general class of graphs toroidal semidirect
product graphs. We explain how our framework not only encompasses cube-
connected cycles, recursive cubes of rings and cube-connected circulants but
also the dual-cubes from [23], (some of the) multiswapped networks from [32],
pruned tori similar to those in [38], and (some of the) biswapped networks from
[39]. Our framework is such that there is a range of parameters at our disposal
so that we might vary the graphs obtained; indeed, there is also considerable
scope for defining brand new classes of graphs.

Our second contribution is to design an efficient shortest-path routing algo-
rithm that works no matter which groups and parameters are used to define a
toroidal semidirect product graph. This algorithm runs in time that is polyloga-
rithmic in the size of the base group and polynomial in the size of the extending
group of the semidirect product defining our graph. Of course, our algorithm
can be applied so as to yield an optimal routing algorithm for all of the classes
of graphs mentioned in the previous paragraph.

In the next section, we present the basic definitions and concepts, whereas in
Section 3 we describe our framework and explain why various classes of graphs
from the literature sit within this framework. In Section 4, we briefly look
at the connectivity of our toroidal semidirect product graphs before we provide
the main proofs and technical constructions relating to our shortest-path routing
algorithm in Sections 5 and 6: in Section 5, we reduce the search for shortest
paths in our graphs to a search for specific ‘covering’ walks in a simplified graph,
before examining these walks in detail in Section 6 and deriving our shortest-
path routing algorithm. Our conclusions and directions for further research are
given in Section 7.

2. Basic definitions, concepts and notation

The reader is referred to [9, 11, 12, 19, 40] for basic definitions and concepts
from graph theory, interconnection networks, algorithms and group theory. We
only include in this section material that is core to what follows.

We denote the identity of any group by 1e and the order of any group element
γ by |γ| (it is always clear as to which group any identity element 1e belongs).
The cyclic subgroup generated by some element γ of some group G is denoted
〈γ〉. Given any group G and set of distinct elements ΓG ⊆ G \ {1e}, where ΓG
is closed under inverses, we define the Cayley graph Cay(G; ΓG) to have the set
of elements of G as its set of vertices and an edge joining some vertex g ∈ G to
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the vertex gγ, for every γ ∈ ΓG . Note that any Cayley graph is simple, as are
all graphs in this paper.

Let G be a group and let Ω be a set. Suppose that for every g ∈ G, there is a
permutation ϕg of Ω so that: ϕ1e is the identity permutation; and ϕgh = ϕgϕh.
Then we say that G acts on Ω or that the permutations ϕ = {ϕg : g ∈ G} form
an action of G on Ω. Suppose that Ω consists of the elements of a group Q.
We say that G acts on Q if G acts on Q as a set and also the action respects
the group structure of Q; that is, for each g ∈ G and q1, q2 ∈ Q, we have that
ϕg(q1q2) = ϕg(q1)ϕg(q2) (that is, ϕg is an automorphism of Q). Let G and Q
be groups so that G acts on Q via the action ϕ. The semidirect product Qo G
is the group whose element set is Q× G and where the group multiplication is
defined via (q, g)(q′, g′) = (qϕg(q

′), gg′), for all g, g′ ∈ G and q, q′ ∈ Q. The
group Q is referred to as the base group and the group G as the extending group
of the semidirect product Qo G.

A circulant on n ≥ 2 vertices is a graph that is a Cayley graph of the cyclic
group Zn of order n. So, a circulant can be thought of as having: the vertex
set {0, 1, . . . , n − 1}; an associated set I ⊆ {1, 2, . . . , n − 1} so that j ∈ I if,
and only if, n − j ∈ I; and where for any distinct u, v ∈ {0, 1, . . . , n − 1},
(u, v) is an edge if, and only if, |u − v| ∈ I. A multiplicative circulant [33]
is a circulant graph where n = rm, for some r ≥ 2 and m ≥ 1, and where
I = {ri, rm − ri : i = 0, 1, . . . ,m − 1} (with any repetitions removed). An
n-dimensional torus, where n ≥ 1, is the Cartesian product of n cycles; if the
length of each of these cycles is k ≥ 3 then we obtain the k-ary n-cube Qkn (we
can regard hypercubes as special 2-ary n-cubes). For any graph G and any two
vertices u and v of G, we denote the length of a shortest path in G from u to v
by dG(u, v) and we denote the diameter of G by diam(G).

As we will hear later, low degree and low diameter feature in our toroidal
semidirect product graphs and it is worthwhile providing a little more informa-
tion as to why these qualities are required in interconnection networks. Con-
cerning the degree, first, if we fix the number of vertices in a graph then the
lower the degrees of the vertices, the fewer wires or cables we will need when we
build the corresponding interconnection network. Second, each of the routers
associated with a processor has a limited number of pins with these pins par-
titioned so as to be allocated to channels. Securing a higher bandwidth for
the resulting channels means having a smaller number of channels; that is, the
smaller the degree, the higher the potential channel bandwidth. Third, the
more incoming and outgoing channels to some router (within some processor),
the more complex the router architecture needs to be so as to be able to han-
dle the additional traffic and, also, the higher the latency of the router (that
is, the time to get data across the router). We have already heard that the
diameter serves as a proxy for worst-case message latency. The combination of
low degree and low diameter motivates the study of Moore graphs as potential
interconnection networks (see, e.g., [7]).
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3. Building our interconnection networks

We now describe a general construction of an interconnection network formed
as a Cayley graph of a semidirect product S = QoG. As we shall see, there are
various conditions on and parameters associated with the groups Q and G that
make them viable with respect to our construction. We illustrate our method-
ology by incrementally building the cube-connected circulants as we proceed; as
we shall see, this involves choosing Q to be the direct product of cyclic groups
of order 2 and G to be a multiplicative circulant (together with a specific action
of G on Q, a specific generating set of Qo G and other associated parameters).

3.1. The group G
Let G = H × 〈γ〉 be a finite abelian group where |γ| = cr, with c ≥ 1 and

r ≥ 2. Let

ΓG = {(1e, γ), (1e, γ
−1)} ∪ {(1e, γkr) : k ∈ IR} ∪ {(σ, 1e) : σ ∈ ΓH},

where:

• IR ⊆ {1, 2, . . . , c− 1} so that k ∈ IR if, and only if, c− k ∈ IR

• if cr = 2 then (1e, γ
−1) is omitted from ΓG

• ΓH is an inverse-closed set of non-trivial elements of the group H that
generates H.

Consequently, ΓG is inverse-closed and generates G. Define the graph G =
Cay(G; ΓG). It will be useful to describe G as follows.

• The subgraph G0 defined as:

G0 = Cay(1e × 〈γ〉; {(1e, γ), (1e, γ
−1)} ∪ {(1e, γkr) : k ∈ IR})

(with the generator (1e, γ
−1) omitted if cr = 2) is isomorphic via the map

(1e, γ
i) 7→ i (mod cr) to the graph, whose vertex set is {0, 1, . . . , cr − 1},

that is formed by a cycle 0, 1, 2, . . . , cr−1, 0, which we call the basic cycle of
G0, so that in addition each vertex i is adjacent to vertex kr+i ( mod cr),
for each k ∈ IR; consequently, G0 is a circulant graph. (Note that if cr = 2
then G0 is just an edge rather than a cycle.)

– For each 0 ≤ i ≤ r − 1, we can think of the vertices of {jr + i : j =
0, 1, . . . , c− 1} as lying on ‘row’ i of G0 with an edge (j1r+ i, j2r+ i)
between two distinct vertices on row i if, and only if, either j1− j2 or
c−(j1−j2) lies in IR. Hence, the vertices on any row i induce a graph
isomorphic to the (circulant) graph R on the vertices {0, 1, . . . , c−1}
via the natural isomorphism jr + i 7→ j.
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– There are edges from {(i, i + 1) : 0 ≤ i ≤ cr − 1} (with addition
modulo cr; these are edges of the basic cycle) lying in ‘columns’ so
that there are ‘wrap-around’ edges from the bottom of column j to
the top of column j + 1, for j = 0, 1, . . . , c − 1, if c > 1 (addition is
modulo c). If c = 1, we have that: if r > 2 then there is a wrap-
around edge from the bottom of column 0 to the top of column 0;
and if r = 2 then the two column vertices form an edge.

– Hence, for each 0 ≤ i ≤ cr− 1, we can rename the vertex i = yr+ x,
where 0 ≤ x ≤ r − 1 and 0 ≤ y ≤ c − 1, as (x, y) whence we have
column-edges

{((x, y), (x+ 1, y)) : 0 ≤ x ≤ r − 2; 0 ≤ y ≤ c− 1}
∪{((r − 1, y), (0, y + 1 (mod c)) : 0 ≤ y ≤ c− 1}

and row-edges

{((x, y), (x, y + k (mod c))) : 0 ≤ x ≤ r − 1; 0 ≤ y ≤ c− 1; k ∈ IR}.

• The graph G is formed from |H| copies of G0, each labelled with a unique
element of H; so, the vertices of G can also be named {(σ, x, y) : σ ∈
H; 0 ≤ x ≤ r − 1; 0 ≤ y ≤ c − 1} in the obvious way. Throughout,
we regard vertices of G as group elements and denote them as (σ, γi) or
(σ, x, y) interchangeably.

• For any 0 ≤ x ≤ r− 1 and 0 ≤ y ≤ c− 1, there are some additional edges
of the form ((σ, x, y), (σ′, x, y)), where σ 6= σ′. For any fixed such x and y,
these additional edges induce a graph isomorphic to Cay(H; ΓH) on the
vertices of {(σ, x, y) : σ ∈ H}. We call these additional edges H-edges.

The graph G0 of the copy of G labelled σ ∈ H can be visualized as in Fig. 1
(here, c > 1) and the graph G in Fig. 2. Note that the edge-set of G partitions
as the set of row-edges, the set of column-edges and the set of H-edges. The
parameters at our disposal when defining G are: r and c; IR; and H and ΓH.

In the definition of the cube-connected circulants in [28], when building G we
choose: r ≥ 3; c = rp−1, for some p ≥ 1; IR = {ri, rp−1− ri : i = 0, 1, . . . , p− 2}
(with any repetitions removed); and H to be the trivial group. Consequently,
G is the multiplicative circulant on rp vertices.

3.2. The group Q acted on by G
Let Q be a finite direct product of finite cyclic groups. Batch these groups

together so that batch Bk is the direct product of nk ≥ 1 cyclic groups Zbk ,
where bk ≥ 2, for 1 ≤ k ≤ m, and where m ≥ 1 and b1 > b2 > . . . > bm.
Suppose that for 1 ≤ k ≤ m, the generators of the groups in batch Bk are
qk,1, qk,2, . . . , qk,nk . Define n =

∑m
k=1 nk. We can consider an element

q = (q
a1,1
1,1 , q

a1,2
1,2 , . . . , q

a1,n1
1,n1

, q
a2,1
2,1 , q

a2,2
2,2 , . . . , q

a2,n2
2,n2

, . . . , q
am,1
m,1 , q

am,2
m,2 , . . . , q

am,nm
m,nm )
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Figure 1: The graph G0.

Figure 2: The graph G.

of Q as an n-tuple of integers

(a1,1, a1,2, . . . , a1,n1
, a2,1, a2,2, . . . , a2,n2

, . . . , am,1, am,2, . . . , am,nm).

Fix 1 ≤ k ≤ m. Let Mk be an nk × nk permutation matrix (that is, there
is exactly one 1 in every row and column, with 0s elsewhere) so that the order
|Mk| of Mk divides r, where r is the parameter from our construction of G in
Section 3.1. The group 〈Mk〉 acts, by left multiplication, on the set of column
vectors {ei : i = 1, 2, . . . , nk}, where ei ∈ {0, 1}nk has 1 in the ith component
and 0 elsewhere. When choosing Mk, also choose 1 ≤ dk ≤ nk and ensure that
the orbit of {ei : i = 1, 2, . . . , dk} under 〈Mk〉 is {ei : i = 1, 2, . . . , nk}; so,
nk ≤ dk|Mk|. Define |Mk| > µk ≥ 0 to be the least such µk so that {ei : i =
1, 2, . . . , nk} = {M l

kej : 1 ≤ j ≤ dk; 0 ≤ l ≤ µk}; so, nk ≤ dk(µk + 1). Define
d =

∑m
k=1 dk. The value of µk will obviously depend on the cycle decomposition
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of the permutation pk described by Mk and the chosen value of dk. In any case,
|Mk| is the least common multiple of the lengths of the cycles in the cycle
decomposition of pk, and µk is less than the length of the longest cycle in the
cycle decomposition of pk (certainly, µk < nk and µk < r).

Define µ = max{µk : 1 ≤ k ≤ m} and M to be the n × n matrix obtained
by placing M1,M2, . . . ,Mm down the leading diagonal, with 0s elsewhere. Con-
sequently, we have that: |M | = lcm{|Mk| : 1 ≤ k ≤ m} divides r; |M | is the
least common multiple of the lengths of all cycles of the cycle decompositions
of the permutations p1, p2, . . . , pm; and µ is less than the length of the longest
cycle of the cycle decompositions of the permutations p1, p2, . . . , pm (certainly,
n ≤ d(µ+1), µ < n and µ < r). The matrix M can be visualized as in Fig. 3(a).
There is an obvious action of 〈M〉 on Q by left multiplication.

Figure 3: The n× n matrix M in general and for cube-connected circulants.

Consider the following action of G on Q: for g = (σ, γi) ∈ G, where (σ, γi) =
(σ, x, y) ∈ G, and for q ∈ Q, define the map ϕg : q 7→ M iq. It is trivial to
check that this is indeed an action of G on Q. Note that because |M | divides
r, we have that for any integer i, (σ, γi) acts like (σ, γi (mod r)) = (σ, γx) on Q.
Consequently, for any 0 ≤ x ≤ r − 1, all elements of G lying in row x of any
copy of G0 within G act on Q in the same way (note also that depending upon
the values of all the parameters involved, it might be the case that elements
lying on rows x and x′, where 0 ≤ x < x′ ≤ r − 1, of possibly different copies
of G0 within G act on Q in the same way). The parameters at our disposal
when defining H are: m; b1, b2, . . . , bm; n1, n2, . . . , nm; M1,M2, . . . ,Mk; and
d1, d2, . . . , dm, but under the stipulations that |Mk| divides r and the orbit of
{ei : i = 1, 2, . . . , dk} under 〈Mk〉 is {ei : i = 1, 2, . . . , nk}, for 1 ≤ k ≤ m.

When building the cube-connected circulants in [28], with regard to Q we
choose: m = 1; b1 = 2; n1 = n; d1 = d, such that n divides rd; and M to be
the n × n permutation matrix as depicted in Fig. 3(b) (corresponding to the
permutation that cyclically shifts vector components d places to the right with
‘wrap-around’). Hence, µ = µ1 = dnd e − 1, Q is the direct product of n copies
of Z2 and because of our stipulation that n divides rd, |M | divides r.
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3.3. Our interconnection network

We are now in a position to build our interconnection network S. Form the
semidirect product S = Q o G (using the above action of G on Q). For any
1 ≤ k ≤ m and 1 ≤ j ≤ nk, define

qεk,j = (0, . . . , 0, ε, 0, . . . , 0) ∈ Q,

where ε = ±1 lies in component j +
∑k−1
i=1 ni (with the elements of Q taken as

n-tuples of integers), and define

ΓQ =

m⋃
k=1

{qεk,1,qεk,2, . . . ,qεk,dk : ε = ±1},

where if bm = 2 then we remove all duplications of the form q−1m,j from ΓQ. Note

that
⋃µ
l=0{M lq : q ∈ ΓQ} = {qεk,j : 1 ≤ k ≤ m; 1 ≤ j ≤ nk; ε = ±1}.

Define S = Cay(Q o G; (1e × ΓG) ∪ (ΓQ × 1e)). Hence, S consists of |Q|
disjoint copies of G with additional edges dictated by ΓQ and the action of G
on Q; we call these additional edges the Q-edges of S.

The cube-connected circulant CQn(d, r,m) is Cay(QoG; (1e×ΓG)∪ (ΓQ×
1e)) where G is as in the final paragraph of Section 3.1 and Q is as in the final
paragraph of Section 3.2. In general, we call any graph S constructed as in this
section a toroidal semidirect product graph.

3.4. Our graph S as an interconnection network

Intuitively speaking, the graph S consists of copies of G, one for each element
of Q. A vertex in some copy of G is adjacent to d vertices of the same name in
other copies of G with the actual copies of G dictated by the action of G on Q
and our choice of parameters. Some basic properties of S are as follows:

• the number of vertices in S is |G||Q| = |H|cr
∏m
k=1 b

nk
k

• S is regular of degree |ΓH|+ |IR|+ dG + dQ where:

– if bm > 2 then dQ = 2
∑m
j=1 dj

– if bm = 2 then dQ = dm + 2
∑m−1
j=1 dj

– if cr > 2 then dG = 2

– if cr = 2 then dG = 1.

One of the motivations for Mokhtar to introduce the cube-connected cycles
in [28] was the need to improve the path-length deficiencies of cycles, in recursive
cubes of rings, by using multiplicative circulants instead. In turn, one of the
motivations for the study of the recursive cubes of rings in [34] was to enable
scalability and the beneficial properties of hypercubes but so as to keep the
degree constant and exert control over the diameter. Our toroidal semidirect
product graphs provide for these controls but are much more general than what
has gone before (as we’ll see in the next section).
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As we have explained above, our graph S, of size |G||Q| = |G|bn, for some
b1 ≤ b ≤ bm, is intended to have beneficial properties in relation to its potential
usage as an interconnection network. A necessary property of any intercon-
nection network is that there is an efficient routing algorithm, where ‘efficient’
means of low time and space complexity and easy to implement (remember: a
routing algorithm needs to be implemented at each processor of a distributed
system). In particular, given the fact that interconnection networks are intended
to have hundreds of thousands or even millions of processors, hosting a com-
plete representation of the (adjacency matrix of the) interconnection network
at each processor is not feasible as the memory required to host routing tables
at each processor can be prohibitive. Also, routing tables are much more in-
flexible than a routing algorithm when it comes to tolerating faults or enabling
adaptive route selection. With regard to S, we think of the graph G, of size
|G|, as being small enough to deal with explicity but we insist that any routing
algorithm should have time complexity that is polynomial in n (the ‘dimension’
of our ‘shape graph’). We say that a routing algorithm for a toroidal semidirect
product graph has time complexity that is polynomial in |G| and polylogarithmic
in |Q| if the time complexity is polynomial in both |G| and n.

3.5. Some examples

We have already explained how the cube-connected circulants are defined
within our framework. Let us now describe some other classes of graphs that
can be so defined (we end with some classes of graphs from the literature which
are built around semidirect products but do not quite fit within our framework).

The cube-connected cycles CCCn, for n ≥ 3, originated in [30] and has vertex
set {0, 1}n × {0, 1, . . . , n − 1} where there is an edge from (u, i) to (v, j), for
any u,v ∈ {0, 1}n and for any 0 ≤ i, j ≤ n− 1, if one of the following two cases
holds:

• u = v and |i− j| = 1 (mod n)

• i = j and u and v differ only in the (i+ 1)th bit.

Suppose that when building G we choose: r ≥ 3 and c = 1; IR = ∅; and H as the
trivial group. Hence, G is a cycle of length r ≥ 3. With regard to Q, we choose:
m = 1; b1 = 2; n1 = r; and d1 = 1. Consequently, Q is the direct product of
r copies of Z2. The r × r matrix M is the permutation matrix that cyclically
shifts each component of a vector one place to the right, with ‘wrap-around’,
and can be visualized as in Fig. 3(b) except that r replaces n in the figure with
1 replacing d. The resulting graph S is the cube-connected cycles CCCr and is
a special case of a cube-connected circulant.

Another special case of a cube-connected circulant is the recursive cubes of
rings. Recursive cubes of rings were first defined in [34] but not as Cayley
graphs and restrictions need to be applied, as was done in [29], so that they can
be realised as Cayley graphs of semidirect products. They are defined within
our framework just as cube-connected circulants are except that in addition
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c = 1; so, G is a cycle rather than a multiplicative circulant, as is the case for
cube-connected circulants.

Biswapped networks were proposed in [39] as ‘symmetric versions’ of OTIS
networks, which originated as models of optoelectronic interconnection networks
(see [31] for more on the history and evolution of such networks). The biswapped
network Bsw(G), where G is a graph on the vertex set {v1, v2, . . . , vn}, is defined
by taking 2n copies of G, labelled by elements of {0, 1} × {v1, v2, . . . , vn}, and
including the edge joining vertex vi of the copy of G labelled (0, vj) to the vertex
vj of the copy of G labelled (1, vi), for all i, j ∈ {v1, v2, . . . , vn}. A visualization
of Bsw(G) is given in Fig. 4 where the copies of G labelled (0, vi) (where the
index is vi in the figure) are pictured at the top and those labelled (1, vi) at
the bottom. Suppose we take G to be the cycle Cp of length p ≥ 3. One can
see in Fig. 4 the ‘shape’ of a three-dimensional torus. The biswapped network
Bsw(Cp) can be defined within our framework as follows. With regard to G,
choose: r = 2 and c = 1; IR = ∅; and H to be the trivial group. So, G is an
edge. With regard to Q, choose: m = 1; b1 = p; n1 = 2; d1 = 1; and the 2× 2

matrix M to be

[
0 1
1 0

]
. Consequently, Q is Zp × Zp, with the resulting graph

S isomorphic to Bsw(Cp). Of course, other biswapped networks Bsw(G) can
be defined within our framework. For example, if we choose: r = 2 and c = 1;
Ir = ∅; H to be the trivial group; m = 1; b1 = p; n1 = 4; d2 = 2; and the

4× 4 matrix M to be


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 then we obtain that the resulting graph S

is isomorphic to the biswapped network Bsw(Qp2).

Figure 4: The graph Bsw(G).

Suppose that when building G we choose: r ≥ 4 is even and c = 1; IR = ∅;
and H as the trivial group. Hence, G is a cycle of even length r ≥ 4. With
regard to Q, we choose: m = 1; b1 = r; n1 = 2; and d1 = 1. Consequently, Q is
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Zr × Zr. The 2× 2 matrix M is defined as

[
0 1
1 0

]
. The resulting graph S can

be regarded as a ‘pruned’ r-ary 3-cube Qr3:

• a vertex of the form (q, (σ, γi)) can be identified as ((u, v), (1e, x, 0)), i.e.,
as (u, v, x), with u (resp. v, x) visualized three-dimensionally as index-
ing the place of a vertex in a left-to-right row (resp. front-to-back row,
column)

• the r vertices in the column indexed as (u, v, ∗) are joined in a cycle of
length r

• if x is even (resp. odd) then the r vertices in the left-to-right (resp. front-
to-back) row indexed as (∗, v, x) (resp. (u, ∗, x)) are joined in a cycle of
length r.

The graph S is actually identical to the multiswapped network Msn(Cr;Cr) of
[31], where Cr is a cycle of length r (the graph Msn(Cr;Cr) can be pictured
similarly to that in [32, Fig. 4(a)]). Multiswapped networks are essentially built
by ‘fusing’ together lots of biswapped networks. It is easy to extend the above
construction so that we can build a variety of pruned k-ary n-cubes within our
framework.

The dual-cube DCn, for n ≥ 1, originates in [23] and is defined there as
follows:

• the vertex set is {0, 1}2n+1

• there is an edge joining two vertices if, and only if,

– the bit-strings of the two vertices differ in exactly one position, with
the additional proviso that

– if the position where the bit-strings differ is position i and 1 ≤ i ≤ n
(resp. n + 1 ≤ i ≤ 2n) then position 2n + 1 of both bit-strings is
necessarily 0 (resp. 1).

When building G, we choose: r = 2 and c = 1; IR = ∅; and H to be the trivial
group. So, G is an edge. With regard to Q, we choose: m = 1; b1 = 2; n1 = 2p;
and d1 = p. Consequently, Q is the direct product of 2p copies of Z2. The
2p × 2p matrix M is the permutation matrix that swaps the ith and (p + i)th
components of a vector, for every 1 ≤ i ≤ p; this matrix can be obtained from
the matrix above in the multiswapped network case by replacing 0 in that matrix
with a p × p matrix of 0s and 1 with a p × p identity matrix. The graph S is
the dual-cube DCp. (Note that DCp was observed to be a Cayley graph of the
semidirect product QoG in [42]; however, the definition of DCp as such on [42,
p. 1734] is incorrect.)

Consider the following more complex construction. When building G, we
choose: r ≥ 3 divisible by 3; c ≥ 6; IR = {2, 5}; and H to be the trivial
group. The graph G is a circulant and can be visualized as in Fig. 5(a) when
r = 6 and c = 7 (the column-edges are depicted as solid lines and the row-edges
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are depicted as dashed lines). With regard to Q, we choose: m = 1; b1 = 2;
n1 = 3; and d1 = 2. Consequently, Q is the direct product of 3 copies of

Z2. We choose the 3 × 3 matrix M as

0 0 1
1 0 0
0 1 0

. So, the resulting graph S

consists of 8 copies of G where: all vertices in row 0 in any copy of G labelled
(α1, α2, α3) ∈ {0, 1}3 are adjacent to the vertices of the same name in the copies
of G labelled (ᾱ1, α2, α3) and (α1, ᾱ2, α3); all vertices in row 1 in any copy of G
labelled (α1, α2, α3) ∈ {0, 1}3 are adjacent to the vertices of the same name in
the copies of G labelled (α1, ᾱ2, α3) and (α1, α2, ᾱ3); all vertices in row 2 in any
copy of G labelled (α1, α2, α3) ∈ {0, 1}3 are adjacent to the vertices of the same
name in the copies of G labelled (α1, α2, ᾱ3) and (ᾱ1, α2, α3); all vertices in row
4 in any copy of G labelled (α1, α2, α3) ∈ {0, 1}3 are adjacent to the vertices
of the same name in the copies of G labelled (ᾱ1, α2, α3) and (α1, ᾱ2, α3); and
so on. A few of the Q-edges can be visualized as in Fig. 5(b) where Q-edges
across the first (resp. second, third) ‘dimension’ are depicted as running front-
to-back (resp. right-to-left, top-to-bottom). In so far as we are aware, such a
graph S has not featured before in the literature but it demonstrates the variety
of graphs that can be defined within our framework. More on the pruning of
interconnection networks using the semidirect product can be found in [38].

Figure 5: A particular graph G and some Q-edges within S.

As our final illustration of the graphs that can be defined within our frame-
work, let us involve the group H which has hitherto not featured. Define G by
choosing: r ≥ 3 and c = 1; Ir = ∅; and H = (Zr)p−1, for some p ≥ 2, with
ΓH = {ei, (r− 1)ei : 1 ≤ i ≤ p− 1} (of course, ei is the (p− 1)-tuple with a 1 as
the ith component and 0s elsewhere). So, G is an r-ary p-cube Qrp. Define Q by
choosing: m = 1; b1 = 2; n1 = q, with q ≥ 1; d1 = 1; and M as the q× q matrix
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which shifts each component of a vector 1 place to the right, with ‘wrap-around’
(similarly to the matrix M defined above for cube-connected cycles). So, the
resulting graph G consists of 2q copies of an r-ary p-cube Qrp where the Q-edges
are analogous to the Q-edges of a cube-connected cycles. In so far as we are
aware, such a graph S has not featured before in the literature. However, our
construction shows that the ‘core’ graph G of a graph S within our framework
need not necessarily be circulants.

There exist other interconnection networks that have been defined using
group semidirect products but that do not fit into our framework. We now
provide three examples.

Wrapped butterflies. Suppose that we define G = Zn = 〈γ〉, for some n ≥ 3, and
Q = (Z2)n. For q ∈ Q, define ϕγ : q = (a1, a2, a3, . . . , an) 7→ (an, a1, a2, . . . , an−1).
This yields an action of G on Q and so we can build the semidirect product
Q o G w.r.t. this action. Let us define the set of generators ΓS of Q o G as
ΓS = {(1e, γ), (1e, γ

−1), (en, γ
−1), (e1, γ)} (note that this set is inverse-closed).

The resulting graph Cay(QoG; ΓS) is the wrapped butterfly network WBn (see,
e.g., [21]). Wrapped butterflies almost fit within our framework except that the
chosen set of generators ΓS means that Q-edges do not join vertices of the same
name (in different cycles of length n).

Generalized cube-connected cycles. The cube-connected cycles mentioned earlier
were extended to generalized cube-connected cycles GCC in [8]. These graphs
were somewhat loosely defined and almost fit within our framework. Suppose
that when building G we choose: r ≥ 2 and c = 1; IR = ∅; and H as the trivial
group. Hence, G is a cycle of length r ≥ 3 or an edge, if r = 2. With regard
to Q, we choose: m = 1; b1 = 2; and n1 = n. Consequently, Q is the direct
product of r copies of Z2. In [8], M was allowed to be any non-singular n × n
matrix over {0, 1} (with addition modulo 2) and the set of generators of the
semidirect product Q o G was left as user-defined (so the parameter d1 plays
no role). While the class of generalized cube-connected cycles GCC does not
fit precisely within our framework, such graphs are Cayley graphs of the group
QoG. It was acknowledged in [8] that ensuring the connectivity of a generalized
cube-connected cycle is problematic.

Supertoroids. Finally, another class of interconnection networks that has been
defined using semidirect products but does not fit within our framework is the
class of supertoroids as defined in [14, 13] (see [37] for a more accessible account).
Supertoroids are Cayley graphs of the semidirect product Zc2loZck, where c ≥ 2
and k, l ≥ 1. The group 〈α〉 = Zck acts on 〈β〉 = Zc2l as follows: define the map
ϕαi : βj 7→ β(1−icl)j . Define the set of generators ΓS = {(αε, 1e), (1e, βε) : ε =
±1} and let S be the graph Cay(Zc2l o Zck; ΓS). The graph S can be thought
of as follows.

• S consists of c2l copies of a cycle Cck, of length ck, whose vertex set is
{0, 1, . . . , ck − 1}; moreover, these copies can be labelled 0, 1, . . . , c2l − 1.
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• Every vertex of one of these copies of Cck is adjacent to exactly 2 vertices
of the same name in different copies of Cck as follows (where all arithmetic
is modulo c2l):

– vertex 0 of copy j is adjacent to vertex 0 in copies j − 1 and j + 1

– vertex 1 of copy j is adjacent to vertex 1 in copies j + (1 − cl) and
j − (1− cl)

– vertex 2 of copy j is adjacent to vertex 2 in copies j + (1− 2cl) and
j − (1− 2cl)

. . .

– vertex c − 1 of copy j is adjacent to vertex c − 1 in copies j + (1 −
(c− 1)cl) = j + (1 + cl) and j − (1− (c− 1)cl) = j − (1 + cl)

– vertex c of copy j is adjacent to vertex c in copies j + 1 and j − 1

and so on.

It is not difficult to show that S is 4-regular. Note that supertoroids almost fit
within our framework except that the action of Zck on Zc2l is not as is required
in Section 3.2.

The main point of us defining the various classes of graphs in this section is to
show that, first, our framework is broad and encompasses a wide range of graph
classes relevant to the construction of interconnection networks and, second,
there is scope for possibly extending our framework in future so as to capture
other classes of graphs that have hitherto been considered as interconnection
networks. We shall return to this latter point when we present our conclusions.

4. Connectivity

Having defined our framework, we begin with an examination of connectivity.
There are many properties that we would prefer any interconnection network to
have and these properties (some of which we mentioned in the Introduction) need
to be investigated for our graphs. An obvious place to start is to mirror what
was done: in [28] for cube-connected circulants, where (as well as an optimal
shortest-path routing algorithm, which is the main focus of this paper) explicit
formulae for diameters were derived along with embeddings into hypercubes
(and vice versa); and in [29] for recursive cubes of rings where the Wiener
index, the vertex-forwarding index, the edge-forwarding index and the bisection
width were studied.

However, we can shed light on the connectivity of toroidal semidirect product
graphs using existing results and we do this now. (Note that what follows also
fills a gap in [28, 29] where the connectivity of cube-connected cycles or recursive
cubes of rings was not mentioned.) We say that a set of generators of some
group (that is closed under inverses and does not contain the identity) is quasi-
minimal if subsets of these generators can be linearly ordered as B1, B2, . . . , Bn,
for n ≥ 1, so that:
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• each Bi consists of either a generator of order 2 or a pair of generators
that are inverses, so that these subsets of generators are pairwise disjoint
and contain all generators

• for each i = 1, 2, . . . , n − 1, the subgroup generated by the generators of
B1 ∪B2 ∪ . . .∪Bi is a proper subgroup of the subgroup generated by the
generators of B1 ∪B2 ∪ . . . ∪Bi ∪Bi+1,

and we refer to such an ordering as a quasi-minimal ordering of the generators.
This concept arose in [2] and [4] although it is Alspach’s consideration of it in
[3] that we use here: in [3], Alspach proved that any Cayley graph where the
generating set of the group is quasi-minimal necessarily has connectivity equal
to its degree, unless the Cayley graph is from an exceptional family in which
case the connectivity is the degree minus 1. This exceptional family consists of
Cayley graphs for which the quasi-minimal set of generators, linearly ordered
via the subsets B1, B2, . . . , Bn, for n ≥ 2, is such that: B1 consists of a generator
of order 2; and each Bi, for 2 ≤ i ≤ n, consists of a pair of (inverse) generators
of order 4 so that each of these generators commutes with the generator in B1

and is such that its square is equal to the generator in B1. If a regular graph
has connectivity equal to its degree then we say that it is maximally connected .

With regard to the generators of a toroidal semidirect product graph S =
Cay(Qo G; (1e × ΓG) ∪ (ΓQ × 1e)), we can proceed as follows.

• We can arbitrarily order the generators of ΓQ × 1e via sets B1, B2, . . . Bd
of pairs of inverses or elements of order 2, as is appropriate, so that we
have a quasi-minimal ordering.

• If the set of generators ΓG is a quasi-minimal set of generators of G then
we can extend B1, B2, . . . Bd to a quasi-minimal ordering of the generators
of (1e × ΓG) ∪ (ΓQ × 1e).

Given that no toroidal semidirect product graph is a member of the above
exceptional family, Alspach’s result immediately gives us the following corollary.

Corollary 1. The toroidal semidirect product graph S = Cay(QoG; (1e×ΓG)∪
(ΓQ × 1e)) is maximally connected if there is a quasi-minimal ordering of the
generators of ΓG.

We immediately obtain the following result.

Corollary 2. The cube-connected circulants, and so the recursive cubes of rings,
are maximally connected.

5. A framework for shortest paths in S

Our aim is now to develop an efficient algorithm to find a shortest path from
any given source vertex start of S to any given target vertex end (where S is
the interconnection network defined in Section 3.3). As S is a Cayley graph,
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so it is vertex-transitive; consequently, w.l.o.g., we may assume that our source
vertex start is (1e, (1e, 1e)) = (1e, (1e, 0, 0)) in S. We begin by taking a less
algebraic perspective of S and then go on to prove that finding a shortest path
from start to end in S is equivalent to finding a certain type of ‘covering’ walk,
called a D-walk, in a copy of G0 (recall that G0 was defined in Section 3.1 and
there are many copies of G0 within S, as was noted in Section 3.4).

5.1. The torus T associated with S

For any vertex (q, (σ, γi)) of S and for each generator qεk,j ∈ ΓQ, we have

that (q, (σ, γi))(qεk,j , (1e, 1e)) = (q + qεk,j′ , (σ, γ
i)), where M iqεk,j = qεk,j′ (we

use additive notation as we are regarding elements of Q as n-tuples of integers).
Consequently, we can think of Q-edges incident with (q, (σ, γi)) in S as cor-
responding to positive and negative ‘moves’ over d specific ‘dimensions’ within
the

n1 times n2 times nm times

(b1 × . . .× b1 × b2 × . . .× b2 × . . .× bm × . . .× bm)-torus

T of dimension n associated with the group Q; more precisely, T is the Cayley
graph Cay(Q; Γ∗Q), where Γ∗Q = {qεk,j : 1 ≤ k ≤ m; 1 ≤ j ≤ nk; ε = ±1} (we

remove duplications of the form q−1m,j from Γ∗Q if bm = 2 and think of hypercubes
as tori). We call these specific d dimensions of T the dimensions covered by the
vertex (q, (σ, γi)). We reiterate that, by construction, if a dimension of T is
covered by some vertex of S then we can ‘move’ positively or negatively across
the Q-edge in this dimension within S, from one copy of G to another (we
can think of the copies of G within S as being labelled by elements of Q or by
vertices of T ). What the definition of S does, via the action of G on Q, is to vary
the dimensions of T over which we might move, from any chosen vertex of S.
Compare this with the direct product G× T where from any chosen vertex, we
can move over any dimension of T . So, our construction reduces the number of
edges in S in comparison with the number of edges in G×T ; of course, we wish
to do this but so that we do not harm the efficiency of S as an interconnection
network. As we stated earlier, it is important to work with interconnection
networks of low and constant degree.

5.2. Obtaining a canonical edge-ordering

We now show that any shortest path from vertex start to vertex end in S
has a particular canonical form.

Lemma 3. Let ρ be a shortest path from vertex start to vertex end in S. We
may assume that ρ consists of a prefix ρ0 of column- and Q-edges followed by a
sequence ρ1 of row-edges followed by a suffix ρ2 of H-edges.

Proof. Let ρ be a shortest path from vertex start to vertex end in S. The path
ρ consists of a sequence of column-, row-, H- and Q-edges. Let e be anH-edge in
ρ, corresponding to some generator ofQoG of the form (1e, (σ, 1e)), and suppose
that e is followed in ρ by a row-edge or a column-edge e′, corresponding to some
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generator of the form (1e, (1e, γ
k)). As (1e, (σ, 1e))(1e, (1e, γ

k)) = (1e, (σ, γ
k)) =

(1e, (1e, γ
k))(1e, (σ, 1e)), we can replace e and e′ in ρ by a row-edge or a column-

edge, respectively, followed by an H-edge. Suppose now that the H-edge e is fol-
lowed in ρ by aQ-edge, corresponding to some generator of the form (q, (1e, 1e)).
We have that (1e, (σ, 1e))(q, (1e, 1e)) = (q, (σ, 1e)) = (q, (1e, 1e))(1e, (σ, 1e)) and
so we can replace e and e′ in ρ by aQ-edge followed by aH-edge. Hence, w.l.o.g.,
we may assume that all H-edges of ρ appear as a suffix.

Let e be a row-edge, corresponding to a generator of the form (1e, (1e, γ
kr)),

and suppose that e is followed in ρ by a Q-edge e′, corresponding to some
generator of the form (q, (1e, 1e)). We have that (1e, (1e, γ

kr))(q, (1e, 1e)) =
(Mkrq, (1e, γ

kr)) = (q, (1e, γ
kr)) = (q, (1e, 1e))(1e, (1e, γ

kr)) and so we can re-
place e and e′ in ρ with a Q-edge followed by a row-edge. It is trivial to see that
we can replace a row-edge followed by a column-edge in ρ with a column-edge
followed by a row-edge. Hence, w.l.o.g., we may assume that all H-edges of ρ
appear as a suffix and that all row-edges of ρ appear immediately prior to the
suffix of H-edges. The result follows. �

Henceforth, we assume that any shortest path ρ in S from vertex start to vertex
end has the form ρ0ρ1ρ2 given by Lemma 3.

The graph S consists of |Q| copies of G, labelled by the elements q ∈ Q,
and in each of these copies of G, there are |H| copies of G0. In the copy of
G labelled 1e ∈ Q, there is a copy of G0 containing start; call this copy G1e

0,s.
Let Gq

0,s be the copy of G0 in the copy of G labelled q ∈ Q that corresponds

to G1e
0,s, and let K0 be the subgraph of S induced by the vertices of all of

these copies Gq
0,s; that is, K0 is the subgraph of S induced by the vertices of

{(q, (1e, γi)) : q ∈ Q; 0 ≤ i ≤ cr − 1}. An alternative definition of K0 is as the
closure of the subgraph G1e

0,s by traversing column-, row- and Q-edges. Note
that the prefix ρ0ρ1 of any canonical shortest path ρ consists of vertices in K0

and let end′ be the vertex reached after traversing the sequence of edges ρ0ρ1.
In particular, if end = (q, (σ, γj)) then end′ = (q, (1e, γ

j)). Hence, the suffix ρ2
is isomorphic to a shortest path in Cay(H; ΓH) from 1e to σ. Consequently, it
remains to find a shortest path from start = (1e, (1e, 1e)) to end′ = (q, (1e, γ

j))
in K0.

Project K0 onto a copy of G0, which we call Ḡ0, via (q, (1e, γ
i)) 7→ (x, y),

where q ∈ Q, 0 ≤ i ≤ cr − 1 and i = ry + x, with 0 ≤ x ≤ r − 1 and
0 ≤ y ≤ c − 1. Note that any two vertices of K0 that are projected onto the
same vertex of Ḡ0 cover the same dimensions; hence, it makes sense to talk
about the dimensions covered by vertices in Ḡ0. Finding a path ρ0ρ1 in K0

from start to end′ = (q, (1e, γ
j)), where j = y0c+ x0 with 0 ≤ x0 ≤ r − 1 and

0 ≤ y0 ≤ c− 1, is equivalent to finding a walk π in Ḡ0 from (0, 0) to (x0, y0) so
that:

• π consists of a prefix π0 of column-edges followed by a suffix π1 of row-
edges

• the set of dimensions of the torus T associated with Q covered by the
vertices on the walk π0 suffices to build a path from 1e to q in T ; that
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is, if D is the set of dimensions for which the corresponding component of
q is non-zero (we are thinking of q as a tuple of integers) then the set of
dimensions covered by the vertices of π0 contains D.

A walk π, as above, can be ‘expanded’ to a path within K0 from (1e, (1e, 0, 0)) to
end′ = (q, (1e, x0, y0)) by enmeshing Q-edges amongst the column-edges of π0,
at the appropriate point in the expansion, and then to conclude with the suffix
π1 of row-edges to get to end′. Note that every dimension from D is necessarily
involved in a move on any path within K0 from (1e, (1e, 0, 0)) to (q, (1e, x0, y0)).
Consequently, in order to find our shortest path ρ0ρ1 from start to end′ in K0,
we require a shortest walk π = π0π1 in Ḡ0 from (0, 0) to (x0, y0) consisting of
a walk of column-edges π0 followed by a path of row-edges π1 so that every
dimension in D is covered by some vertex on the walk π0; that is, π0 and π are
what we define as D-walks.

Remark 4. It can be appreciated now as to why within our framework we have
restricted Q to be a direct product of cyclic groups and ΓQ to consist of some
‘generators’ of these individual groups: shortest-path routing in the torus T is
governed solely by the dimensions for which q is non-zero and so we need only
look for a shortest D-walk π0 in Ḡ0, safe in the knowledge that once found we
can extend it to a shortest path in K0 from (1e, (1e, 0, 0)) to (q, (1e, x0, y0)). If
Cay(Q; Γ∗Q), for some set of elements Γ∗Q, were to be a more complex, ‘non-
dimensional’ graph then, in general, we cannot simply worry about exploring
walks in Ḡ0 that cover an appropriate set of generators. In particular, there
might be various walks π0 that cover various sets of generators, each set of
which enables us to build a path in K0 from (1e, (1e, 0, 0)) to (q, (1e, x0, y0)),
but where it is not clear which walk π0 and which set of generators yields a
shortest such path.

6. Types of walks

From the previous section, we have reduced our task to finding a shortest
walk π = π0π1 in Ḡ0 from (0, 0) to (x0, y0) so that π0 is a D-walk of column-
edges and π1 is a path of row-edges. There are two essential types of walks from
which the shortest one is drawn:

• Type A: c = 1 or c > 1 and the D-walk π0 does not pass through either
(0, 1) or (0, c− 1)

• Type B: c > 1 and the D-walk π0 passes through either (0, 1) or (0, c−1).

We shall deal with these two types separately.

6.1. Walks of Type A

There are two sub-types of Type A walks.

Lemma 5. Let π = π0π1 be a shortest walk in Ḡ0 from (0, 0) to (x0, y0) of Type
A. This walk π is of one of two sub-types:
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• Type A( i): the D-walk π0 is from (0, 0) to (x0, 0)

• Type A( ii): the D-walk π0 is from (0, 0) to (x0, c− 1).

Proof. With reference to Fig. 1, the D-walk π0 must end at a vertex on the
path of column-edges from (1, c− 1) to (r − 1, 0) through (0, 0). �

Of course, in Lemma 5, if c = 1 then there is only one sub-type. Also,
if IR = ∅ then for a Type A(i) (resp. Type A(ii)) walk to exist we need that
y0 = 0 (resp. y0 = c−1), and we have that π1 is the empty walk (see Section 3.1
for a reminder of the definition of IR).

The following lemmas detail upper bounds on the lengths of the walk π0 in
Lemma 5. However, within their actual proofs there is additional information in
the form of explicit descriptions of π0, for the various cases that can occur (the
hypotheses of Lemmas 6–10 cover all possibilities for a Type A D-walk). We
will use these explicit descriptions when we develop algorithms in Section 6.2.
We do not provide these descriptions of π0 in the statements of the lemmas as to
do so would unnecessarily complicate these statements, which provide succinct
bounds on the length of π0 and culminate in Corollary 11; the descriptions of π0
can be somewhat technically involved (but are readily obtained from the proofs
when we come to develop our algorithms).

We remind the reader that the parameters µ and M are defined in Section 3.2
(r and c are core parameters in the definition of the group G in Section 3.1 and
n is a core parameter in the definition of the group Q in Section 3.2).

Lemma 6. Let π0 be a shortest D-walk in Ḡ0 from (0, 0) to (x0, 0), of Type
A(i), and suppose further that c > 1 and 0 ≤ x0 ≤ µ. The length of π0 is at
most 2µ− x0.

Proof. The location of vertex (0, 0) in Ḡ0 can be visualized as in Fig. 6 (though
it is feasible that (0, 1) and (0, c − 1) are one and the same vertex, i.e., when
c = 2). The different batches of (the n) dimensions of T covered by each vertex
depicted are Di, for i ∈ {0,±1,±2, . . . ,±(r − 1)}. Note that all n dimensions
are covered by the shaded vertices (namely {(i, 0) : 0 ≤ i ≤ µ}) as well as by
the outlined vertices (namely {(0, 0)} ∪ {(i, c − 1) : r − µ ≤ i ≤ r − 1}). Note
also that these batches of dimensions repeat every r vertices (as |M | divides r).

Our D-walk π0 will have length at most 2µ − x0, as the D-walk π′0 defined
as

(0, 0), (1, 0), . . . , (µ′ − 1, 0), (µ′, 0), (µ′ − 1, 0), . . . , (x0, 0)

has length at most 2µ−x0, where µ′ is the least number from {x0, x0+1, . . . , µ}
so that the vertices of the walk cover all dimensions of D. Of course, there may
be a shorter appropriate D-walk than π′0 (although the ‘anti-clockwise’ D-walk
consisting of the path from (0, 0) through (r − 1, c − 1) and on to (x0, 0), of
length cr − x0, is not shorter).

The question is: ‘What does a shortest appropriate D-walk π0 look like?’ In
theory, π0 might wander from (0, 0) to (x0, 0), changing direction many times.
However, we can see that there are limits on these changes of direction. Suppose,
for example, that, with reference to Fig. 6, the walk π0:
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Figure 6: The locality of (0, 0) in Ḡ0.

• starts by moving ‘clockwise’ from (0, 0) (to (1, 0)) and later changes direc-
tion to return to (0, 0) (this is the walk τ1);

• then moves ‘anti-clockwise’ from (0, 0) (to (r−1, c−1)) and later changes
direction to return to (0, 0) (this is the walk τ2);

• then moves ‘clockwise’ from (0, 0) to (x0, 0) (this is the walk τ3);

so, π0 = τ1τ2τ3. As π0 is a shortest appropriate D-walk, τ1 ‘turns’ at some
vertex (t, 0) with t ≤ µ (as otherwise τ1 would pass through (x0, 0) and we
could truncate it ‘on the way back’ after the turn to obtain a shorter appropriate
D-walk). If t ≤ x0 then the walk τ2τ3 is a shorter appropriate D-walk; and if
x0 < t then τ2τ

′
1, where τ ′1 is τ1 truncated at (x0, 0) ‘on the way back’ after the

turn, is a shorter appropriate D-walk. By undertaking a simple case-by-case
analysis, it is not difficult to see that our shortest D-walk is either π′0 or one of
the form

(0, 0), (r − 1, c− 1), . . . , (µl + 1, c− 1), (µl, c− 1), (µl + 1, c− 1), . . .

. . . , (0, 0), . . . , (µr − 1, 0), (µr, 0), (µr − 1, 0), . . . , (x0, 0)

where: r− 1 ≥ µl ≥ r−µ; (µl, c− 1) covers some dimension of D; and µr is the
least number from {x0, x0 + 1, . . . , µ} so that all dimensions of D are covered
by the vertices of this walk. We call such a walk the µl-left D-walk (note that
given D and µl, the walk is thereafter prescribed). The ‘shape’ of the D-walk
π′0, in relation to Ḡ0, can be visualized as a dotted line in Fig. 7(a), whereas
the ‘shape’ of a µl-left D-walk can be visualized as in Fig. 7(b). Collectively, we
call the D-walk π′0 together with all the µl-left D-walks the set of left D-walks
(from (0, 0) to (x0, 0)). Our shortest D-walk will have length at most 2µ−x0.�

Lemma 7. Let π0 be a shortest D-walk in Ḡ0 from (0, 0) to (x0, c−1), of Type
A(ii), and suppose further that c > 1 and r − µ ≤ x0 ≤ r − 1. The length of π0
is at most 2µ− (r − x0).
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Figure 7: The ‘shapes’ of our walks relative to Ḡ0.

Proof. By proceeding similarly to the proof of Lemma 6, we obtain that: our
new D-walk π′0 is the walk of length at most 2µ− (r− x0) that is analogous to
the D-walk π′0 from the proof of Lemma 6 (but heads off in an ‘anti-clockwise’
direction; see Fig. 7(c)); and our µr-right D-walks, where 1 ≤ µr ≤ µ so that
(µr, 0) covers some dimension of D, are defined analogously to the µl-left D-
walks from the proof of Lemma 6 (a µr-right D-walk starts off in a ‘clockwise’
direction; see Fig. 7(d)). Collectively, we call the D-walk π′0 together with all
the µr-right D-walks the set of right D-walks (from (0, 0) to (x0, c − 1)). Our
shortest D-walk will have length at most 2µ− (r − x0). �

Lemma 8. Let π0 be a shortest D-walk in Ḡ0 from (0, 0) to (x0, 0), of Type
A(i), and suppose further that c > 1 and µ < x0 ≤ r − 1. The length of π0 is
x0.

Proof. It must be the case that π0 is the ‘clockwise’ path from (0, 0) to (x0, 0)
of length x0 as all dimensions are necessarily covered. �

Lemma 9. Let π0 be a shortest D-walk in Ḡ0 from (0, 0) to (x0, c−1), of Type
A(ii), and suppose further that c > 1 and 1 ≤ x0 < r − µ. The length of π0 is
r − x0.

Proof. It must be the case that π0 is the ‘anti-clockwise’ path from (0, 0) to
(x0, c− 1) of length x0 as all dimensions are necessarily covered. �

Lemma 10. Let π0 be a shortest D-walk in Ḡ0 from (0, 0) to (x0, 0) when c = 1.
The length of π0 is at most max{2µ, r} ≤ 2r − 2.

Proof. We have that µ < |M | and |M | divides r. Suppose, in the first instance,
that |M | 6= r; so, µ < r

2 and we have that r−µ > µ. If 0 ≤ x0 ≤ µ then we are in
the situation of Lemma 6 (where the length of π0 is at most 2µ−x0; notice that
the ‘anti-clockwise’ path from (0, 0) to (x0, 0) has length greater than 2µ − x0
whereas the D-walk π0 from Lemma 6 has length at most 2µ − x0). Similarly,
if r− µ ≤ x0 ≤ r− 1 then we are in the situation of Lemma 7 (when the length
of π0 is at most 2µ− (r− x0)). Finally, if r−µ > x0 > µ then the D-walk π0 is
either the ‘clockwise’ or the ‘anti-clockwise’ path from (0, 0) to (x0, 0) of length
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x0 or r − x0, respectively, depending upon which is shortest (as all dimensions
are necessarily covered by both of these walks).

Suppose now that |M | = r. If r − µ > µ then the reasoning in the previous
paragraph applies; hence, we may suppose that 2µ ≥ r. In this case, if x0 6= 0
then we take π0 to be the shortest D-walk from the left D-walks (as defined
in the proof of Lemma 6) and the right D-walks (as defined in the proof of
Lemma 7); so, our D-walk π0 has length at most min{2µ− x0, 2µ− (r − x0)}.
Alternatively, if x0 = 0 then we take π0 to be the shortest D-walk from the left
D-walks (as defined in the proof of Lemma 6), the right D-walks (as defined
in the proof of Lemma 7) and the ‘anti-clockwise’ full circular walk from (0, 0),
through (0, r− 1) and on to (0, 0); so, our D-walk π0 has length at most r. Let
us remark that if c = 1 and r = 2 then strictly speaking, Ḡ0 is not a cycle
but an edge. However, if we think of this edge as a cycle of length 2 then the
reasoning above goes through (albeit much more simply). �

By examining the lengths of walks described in the various lemmas above,
we obtain the following result.

Corollary 11. Let π0 be a shortest D-walk in Ḡ0 from (0, 0) to: (x0, 0), if π0
is of Type A(i); or to (x0, c − 1), if π0 is of Type A(ii). The length of π0 is at
most max{2µ, r}.

Having secured our shortest D-walk π0, the path π1 is simply isomorphic to
the shortest path in the circulant graph R (see Section 3.1) either from 0 to y0
or from c− 1 to y0, as appropriate, if these paths exist in R (for we have made
no assumptions about the connectivity of R).

6.2. Algorithms for D-walks of Type A

We can now convert the descriptions of the walk π0 in Ḡ0, in the various
lemmas of Section 6.1, into an algorithm for its construction (assuming it exists).
Suppose that we are given a subset of dimensions D and that 0 ≤ x0 ≤ µ and
c > 1, so that we are looking for a shortest D-walk from (0, 0) to (x0, 0) (hence,
we are in the situation of Lemma 6). It is straightforward to design an algorithm,
call it ShortestLeftDWalk , that outputs a shortest D-walk from (0, 0) to (x0, 0)
from the set of left D-walks; this algorithm ShortestLeftDWalk is detailed as
Algorithm 1.

The first for-loop in lines 1–4 assigns the various batches of dimensions to the
vertices (µ, c−1), (µ+1, c−1), . . . , (r−1, c−1), (0, 0), (1, 0), . . . , (µ−1, 0), (µ, 0)
which we think of as i running through −µ,−(µ− 1), . . . ,−1, 0, 1, . . . , µ− 1, µ.
This can be undertaken in O(nµ) time (note that although the construction of
a set of dimensions in lines 2–3 is phrased in terms of matrix multiplication, we
can use permutations to obtain a more efficient implementation). The second
for-loop in lines 5–7 recomputes Dx0

as all those dimensions covered by vertices
(0, 0), (1, 0), . . . , (x0, 0). This can be undertaken in O(nµ) time. The third for-
loop in lines 8–23 accounts for when the vertex µl of a left D-walk (as defined
in the proof of Lemma 6) is chosen to be each vertex of (r− 1, c− 1), (r− 2, c−
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Algorithm 1 ShortestLeftDWalk

1: for i = −µ up to µ do
2: Di = {l : M iej = el where 1 ≤ j ≤ d1, n1 + 1 ≤ j ≤ n1 + d2, . . .
3: . . . , n1 + . . .+ nm−1 + 1 ≤ j ≤ n1 + . . .+ nm−1 + dm}
4: end for
5: for i = 0 to x0 − 1 do
6: Dx0 = Dx0 ∪Di

7: end for
8: for i = −1 down to −µ do
9: if i 6= −1 then

10: Di = Di ∪Di+1

11: end if
12: D̄i = D \ (Di ∪Dx0)
13: if D̄i = ∅ then
14: µir = x0
15: else
16: µir = x0
17: while D̄i 6= ∅ do
18: µir = µir + 1
19: D̄i = D̄i \Dµir
20: end while
21: end if
22: lengthi = 2|i|+ x0 + 2(µir − x0)
23: end for
24: D̄0 = D \Dx0

25: if D̄0 = ∅ then
26: µ0

r = x0
27: else
28: µ0

r = x0
29: while D̄0 6= ∅ do
30: µ0

r = µ0
r + 1

31: D̄0 = D̄0 \Dµ0
r

32: end while
33: end if
34: length0 = x0 + 2(µ0

r − x0)
35: let j be s.t. lengthj is minimum from {lengthj : j = 0,−1, . . . ,−µ}
36: return (j, lengthj , µ

j
r)
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1), . . . , (r − µ, c − 1); that is, when i is −1,−2, . . . ,−µ. Within this for-loop,
code is as follows.

• The first if-statement in lines 9–11 ensures that Di is recomputed as all the
dimensions covered by vertices (r+i, c−1), (r+i+1, c−1), . . . , (r−1, c−1).
This can be undertaken in O(n) time.

• The next statement in line 12 details the dimensions D̄i remaining to be
covered if µl is set as (r + i, c − 1), as all dimensions of D covered by
(r+ i, c− 1), (r+ i+ 1, c− 1), . . . , (0, 0), . . . , (x0 − 1, 0), (x0, 0) are catered
for. This can be undertaken in O(n) time.

• The next if-statement in lines 13–21 computes the value µr (as defined in
the proof of Lemma 6) for the current left D-walk; we denote this value
by µir. This can be undertaken in O(n(r − µ)) time.

• We compute the length lengthi of the current D-walk in line 22. This can
be undertaken in O(1) time.

So, the for-loop in lines 8–23 can be undertaken in O(n(r − µ)µ) time. Finally,
in lines 24–34 we compute the length of the path π′0, which can be undertaken in
O(n(r−µ)) time, and then in line 35 the minimum length from all left D-walks,
which can be undertaken in O(µ) time. Note that the actual minimum-length
path can be trivially reconstructed from the pair (j, µjr) output in line 36 in
O(µ) time. Hence, the time complexity of ShortestLeftDWalk is O(r2n).

Of course, if we are in the situation of Lemma 7 then there is an analogous
algorithm ShortestRightDWalk (of the same time complexity) that outputs a
shortest D-walk in Ḡ0 from (0, 0) to (x0, c − 1) from the set of right D-walks
(as defined in the proof of Lemma 7) in the case that r − µ ≤ x0 ≤ r − 1
and c > 1. If we are in the situation of Lemma 8 or Lemma 9 then we can
trivially output the corresponding D-walk with time complexity O(r). Similarly,
if we are in the situation of Lemma 10 then we can use the existing algorithms
(together with a check with regard to the ‘anti-clockwise’ full circular walk in
the case when x0 = 0) to obtain a shortest D-walk as required, again with time
complexity O(r2n). Consequently, there is an algorithm, call it ShortestDWalk ,
of time complexity O(r2n) that given an additional input value that is either 0
or c− 1, computes a shortest D-walk from (0, 0) to either (x0, 0) or (x0, c− 1),
respectively, in Ḡ0 that does not pass through either (0, 1) or (0, c − 1). By
Corollary 11, such a D-walk has length at most 2r − 2.

Concerning computing the shortest path π1 in the circulant graph R (if it
exists), we can simply use a breadth-first search to undertake this in O(c|IR|)
time. It might be thought that there could be scope for a more efficient shortest-
path algorithm in R by representing R as the binary representations of c and
the elements of IR, rather than as a c × c adjacency matrix. However, it was
shown in [5] that it is NP-hard to compute shortest-paths in circulant graphs
when the graph is input via this concise representation. Of course, the length
of the path π1 is at most the diameter of R, namely diam(R). So, in summary,
we obtain the following result.
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Corollary 12. If there is a Type A D-walk in Ḡ0 from (0, 0) to (x0, y0) then
this walk has length at most 2r − 2 + diam(R) and we can find and output this
walk in O(r2n+ c|IR|) time.

6.3. D-Walks of Type B

Let us now consider finding a shortest walk π = π0π1 from (0, 0) to (x0, y0)
in Ḡ0 so that π0 is a D-walk of column-edges that passes through either (0, 1) or
(0, c− 1), with c > 1, and π1 is a path of row-edges (such a walk always exists).
We do this mindful of the walks of Type A described above; that is, if we can
be sure that there is a shorter walk of Type A than a potential walk of Type B
then there is no need to consider the walk of Type B.

6.3.1. The case when IR = ∅
We dispense with the case when IR = ∅ first; so, suppose that IR = ∅. If

y0 = 0 then the shortest Type B walk from (0, 0) to (x0, 0) that passes through
either (0, 1) or (0, c − 1) has length min{2r − x0, cr − x0}. However, the Type
A D-walk obtained in either Lemma 6 or Lemma 8 in Section 6.1 above, has
length at most max{x0, 2µ − x0}, which is less than the length of our Type B
walk. So, we may assume that y0 6= 0. A similar argument yields that we may
assume that 1 ≤ y0 ≤ c − 2 or (y0 = c − 1 and x0 = 0). Hence, the shortest
Type B walk π from (0, 0) to (x0, y0) is the ‘clockwise’ path of length y0r + x0
or the ‘anti-clockwise’ path of length (c−y0)r−x0, and so π has length at most
cr
2 .

6.3.2. Exploring Type B D-walks when IR 6= ∅
Henceforth, we assume that IR 6= ∅. Note that any walk π0 from (0, 0) that

passes through (0, 1) or (0, c− 1) is necessarily a D-walk.
We begin by ruling out some possible scenarios (given the Type A analysis

from Section 6.1). Suppose that the D-walk π0 ends at (x0, i), where 0 ≤ i ≤
c−1 (in general there may not exist a path from vertex i of R to vertex y0 as we
have not insisted that R is connected). Suppose further that i = 0. Any walk π0
from (0, 0) to (x0, 0) via (0, 1) or (0, c− 1) has length at least 2r−x0. However,
the Type A D-walk obtained in either Lemma 6 or Lemma 8 has length at
most max{x0, 2µ− x0}, which is less than the length of π0. So, we may assume
that i 6= 0. An analogous argument holds when i = c − 1 and x0 > 0 (using
Lemma 7 and Lemma 9). Thus we may assume that 1 ≤ i ≤ c− 2 or (i = c− 1
and x0 = 0). With reference to Fig. 6, (x0, i) is any vertex on Ḡ0 reachable
by a path of column-edges starting at (0, 1) and moving towards but not past
(0, c − 1). In particular, the shortest D-walk of column-edges from (0, 0) to
(x0, i) is either the ‘clockwise’ path through (0, 1) or the ‘anti-clockwise’ path
through (0, c− 1).

There is also an anomalous case to deal with before we proceed. Suppose
that c = 2; so, (x0, i) = (0, 1) and IR = {1}. If y0 = 0 then the shortest Type B
walk π from (0, 0) to (x0, y0) has length r + 1; and if y0 = 1 then the shortest
Type B walk π from (0, 0) to (x0, y0) has length r. The lengths of these walks
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Figure 8: The target vertices of D-walks in ∆B .

may or may not be less than that using the Type A walk found in Section 6.2
which, by Lemma 6, is at most 2µ or 2µ + 1, respectively; that is, these Type
B walks need to be checked.

So, henceforth we assume that c ≥ 3. Consequently, we have a set of 2c− 4
potential D-walks ∆B = {πi0, π−i0 : i = 1, 2, . . . , c− 2} for π0, where for 1 ≤ i ≤
c− 2:

• πi0 is the ‘clockwise’ path of column-edges from (0, 0) to (x0, i) of length
ir + x0

• if x0 > 0 then π−i0 is the ‘anti-clockwise’ path of column-edges from (0, 0)
to (x0, c− 1− i) of length (i+ 1)r − x0

• if x0 = 0 then π−i0 is the ‘anti-clockwise’ path of column-edges from (0, 0)
to (0, c− i) of length ir.

The target vertices of the paths in ∆B can be pictured as in Fig. 8 where Ḡ0

is depicted, with vertices of {(0, i) : 0 ≤ i ≤ c − 1} in white. In Fig. 8(a),
the target vertices of the paths π1

0 , π
2
0 , . . . , π

c−2
0 are shown in grey, as are the

target vertices of the paths π−10 , π−20 , . . . , π
−(c−2)
0 in Fig. 8(b). Note that we

refer to the walks in ∆B as ‘potential’ walks as it may be the case that there
is no path in R from some vertex i ∈ {1, 2, . . . , c− 1} of R to y0. Note how we
do not bother about a ‘clockwise’ D-walk of column-edges to (0, c − 1) as the
‘anti-clockwise’ walk is shorter, and vice versa with regard to the vertex (0, 1).

For each D-walk in ∆B , there might be an associated shortest path of row-
edges from the target vertex of the D-walk to (x0, y0). For 1 ≤ i ≤ c − 2, we
denote the path of row-edges πi1 (resp. π−i1 ) corresponding to πi0 (resp. π−i0 ) to
be a path of row-edges isomorphic to a shortest path in R from vertex i (resp.
vertex c − 1 − i, if x0 > 0; c − i, if x0 = 0) to vertex y0, if such a path exists;
consequently, if the path πi (resp. π−i) exists then it has length ir+x0+dR(i, y0)
(resp. (i+ 1)r − x0 + dR(c− 1− i, y0), if x0 > 0; ir + dR(c− i, y0), if x0 = 0).
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So, we have a set ∆B = {πi0, π−i0 : i = 1, 2, . . . , c− 2} of D-walks for π0 that
we must consider when searching for the shortest walk of Type B from (0, 0) to
(x0, y0). We can actually dispense with some of the walks in ∆B . Define κ to
be the minimal value from IR (note that κ ≤ c

2 ).

Lemma 13. In order to find a shortest Type B D-walk from (0, 0) to (x0, y0)
(bearing in mind the Type A walks already found), we need only consider the
D-walks {πi0, π−i0 : i = 1, 2, . . . , κ} for π0.

Proof. Let i ∈ {1, 2, . . . , c − 2} and consider the walk πi = πi0π
i
1, where πi0 ∈

∆B and πi1 is as above (we assume πi1 exists). Suppose that k ∈ IR with
i > k ≥ 1. We can obtain a shorter walk from (0, 0) to (x0, y0) than πi as follows:
take the D-walk πi−k0 ∈ ∆B from (0, 0) to (x0, i−k), then the row-edge ((x0, i−
k), (x0, i)) and then the path πi1. The length of the walk πi is ir+x0 +dR(i, y0)
while the length of the new walk is (i− k)r + x0 + 1 + dR(i, y0). Consequently,
there is no need for us to consider the walk πi. Analogous arguments apply to

a walk π−i = π−i0 π−i1 where π−i0 ∈ ∆B , with the walk π
−(i−k)
0 playing the role

of πi−k0 , above (there are two cases: x0 > 0; and x0 = 0). �

We depict a shortened D-walk from (0, 0) to (x0, 4) in Ḡ0 in Fig. 9 as a
dashed line where κ = 3 and the light grey vertices are the vertices ‘ruled out’
according to Lemmas 6–9 in Section 6.1, as above, and the white vertices are
vertices of the form (0, i). As a result, we can find the length of a shortest Type
B walk starting with a D-walk from ∆B in O(κc|IR|) time and output a shortest
such Type B walk in O(c(r + κ|IR|)) time; the length of such a shortest Type
B walk is at most (κ+ 1)r − 1 + diam(R).

Henceforth, we take ∆B to be the set of walks given by Lemma 13. However,
we can prune the set of walks ∆B even further, depending upon κ and x0.

Lemma 14. Suppose that κ ≥ 2 and x0 > 0. In order to find a shortest Type B
D-walk from (0, 0) to (x0, y0) (bearing in mind the Type A walks already found),
we need only consider the D-walks

{π1
0 , π

2
0 , . . . , π

dκ−2
2 e

0 , π−10 , π−20 , . . . , π
−dκ−2

2 e
0 }

from ∆B for π0.

Proof. Let 2 ≤ i ≤ κ − 1. Consider a D-walk πκ−i = πκ−i0 πκ−i1 , where
πκ−i0 ∈ ∆B and πκ−i1 is a shortest path of row-edges from (x0, κ− i) to (x0, y0),

in comparison with the D-walk defined as π
−(i−1)
0 ∈ ∆B extended with the row-

edge ((x0, c− i), (x0, κ− i)) and the path πκ−i1 . The length of the former D-walk
is (κ− i)r+x0 + |πκ−i1 | and the length of the latter is ir−x0 +1+ |πκ−i1 |. Hence,
if κ ≥ 2i then we can dispense with the D-walk πκ−i0 from ∆B . An analogous

argument holds for a walk π−(κ−i) = π
−(κ−i)
0 π

−(κ−i)
1 , with πi−10 playing the role

of π
−(i−1)
0 , above. Hence, we may assume that

∆B = {π1
0 , π

2
0 , . . . , π

dκ−2
2 e

0 , πκ−10 , πκ0 , π
−1
0 , π−20 , . . . , π

−dκ−2
2 e

0 , π
−(κ−1)
0 , π−κ0 }.
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Figure 9: A D-walk to (x0, 4) in Ḡ0.

Consider the D-walk πκ−1 = πκ−10 πκ−11 , where πκ−10 ∈ ∆B and πκ−11 is
a shortest path of row-edges from (x0, κ − 1) to (x0, y0), in comparison with
the D-walk defined as the shortest Type A D-walk from (0, 0) to (x0, c − 1)
(built as in Lemma 7 and Lemma 9) extended with the additional edge ((x0, c−
1), (x0, κ − 1)) and then the path πκ−11 . The length of the former D-walk is
(κ−1)r+x0+|πκ−11 | whereas the length of the latter is at most max{r−x0, 2µ−
r+ x0}+ 1 + |πκ−11 |. Hence, as κ ≥ 2 and x0 > 0, we can dispense with the D-
walk πκ−10 from ∆B . Consider the D-walk πκ = πκ0π

κ
1 , where πκ0 ∈ ∆B and πκ1

is a shortest path of row-edges from (x0, κ) to (x0, y0), in comparison with the
D-walk defined as the shortest Type A D-walk from (0, 0) to (x0, 0) (built as in
Lemma 6 and Lemma 8) extended with the additional edge ((x0, 0), (x0, κ)) and
then the path πκ1 . The length of the former D-walk is κr+x0 + |πκ1 | whereas the
length of the latter is at most max{x0, 2µ−x0}+ 1 + |πκ1 |. Hence, as κ ≥ 2 and
x0 > 0, we can dispense with the D-walk πκ0 from ∆B . Analogous arguments

allow us to dispense with the walks π
−(κ−1)
0 and π−κ0 from ∆B . In conclusion,

we may suppose that

∆B = {π1
0 , π

2
0 , . . . , π

dκ−2
2 e

0 , π−10 , π−20 , . . . , π
−dκ−2

2 e
0 }

(note that if κ = 2 then ∆B = ∅). �

We can actually dispense with the original set of walks ∆B when κ = 1 and
x0 > 0.
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Lemma 15. Suppose that κ = 1 and x0 > 0. There are no Type B D-walks
from (0, 0) to (x0, y0) needing to be considered (bearing in mind the Type A walks
already found).

Proof. Consider the D-walk π1 = π1
0π

1
1 , where π1

0 ∈ ∆B and π1
1 is a short-

est path of row-edges from (x0, 1) to (x0, y0), in comparison with the D-walk
defined as the shortest Type A D-walk from (0, 0) to (x0, c − 1) (built as in
Lemma 7 and Lemma 9) extended with the additional edges ((x0, c−1), (x0, 0))
and ((x0, 0), (x0, 1)), and then the path π1

1 . The length of the former D-walk
is r + x0 + |π1

1 | whereas the length of the latter is at most max{r − x0, 2µ −
r + x0} + 2 + |π1

1 |. Hence, as x0 > 0, we can dispense with the D-walk π1
1

from ∆B . Consider the D-walk π−1 = π−10 π−11 , where π−10 ∈ ∆B and π−11 is a
shortest path of row-edges from (x0, c − 2) to (x0, y0), in comparison with the
D-walk defined as the shortest Type A D-walk from (0, 0) to (x0, 0) (built as in
Lemma 6 and Lemma 8) extended with the additional edges ((x0, 0), (x0, c−1))
and ((x0, c − 1), (x0, c − 2)), and then the path π−11 . The length of the for-
mer D-walk is 2r − x0 + |π−11 | whereas the length of the latter is at most
max{x0, 2µ − x0} + 2 + |π−11 |. Hence, as x0 > 0, we can dispense with the
D-walk π−11 from ∆B . Consequently, when κ = 1 and x0 > 0 we have that
∆B = ∅. �

Finally, we can dispense with some of the original set of walks ∆B when
κ ≥ 2 and x0 = 0.

Lemma 16. Suppose that κ ≥ 2 and x0 = 0. In order to find a shortest Type B
D-walk from (0, 0) to (x0, y0) (bearing in mind the Type A walks already found),
we need only consider the D-walks

{π1
0 , π

2
0 , . . . , π

bκ2 c
0 , π−10 , π−20 , . . . , π

−bκ2 c
0 }

from ∆B for π0.

Proof. If 2 ≤ i ≤ κ−1 then by proceeding as we have done throughout, we can
dispense with πκ−i0 ∈ ∆B (by building a new walk using the walk π−i0 ∈ ∆B)

and with π
−(κ−i)
0 ∈ ∆B (by building a new walk using the walk πi0 ∈ ∆B), so

long as κ > 2i. We can also dispense with πκ0 ∈ ∆B (by building a new walk
using a Type A walk) and with π−κ0 ∈ ∆B (by building a new walk using a
Type A walk). Consequently, when κ ≥ 2 and x0 = 0, we have that

∆B = {π1
0 , π

2
0 , . . . , π

bκ2 c
0 , π−10 , π−20 , . . . , π

−bκ2 c
0 }.

�

In summary:

• if IR = ∅ then we can find the length of a shortest Type B walk in Ḡ0

from (0, 0) to (x0, y0), which is at most cr
2 , in O(1) time and output an

actual shortest walk in time O(cr); and
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• if IR 6= ∅ then we can find the length of a shortest Type B walk in Ḡ0 from
(0, 0) to (x0, y0) which is at most (bκ2 c+ 1)r− 1 + diam(R), in O(κc|IR|)
time and output an actual shortest path in time O(c(r + κ|IR|)),

where κ is the minimal value from IR. We reiterate that when we say ‘a shortest
Type B walk’, we mean after taking into account the Type A walks previously
considered.

6.4. Our main results

So, our analysis above enables us to prove the following theorems (with all
parameters as defined throughout this paper).

Theorem 17. Suppose that we are given a toroidal semidirect product graph S
on Qo G, with parameters as per the construction of S and where IR 6= ∅, with
κ the minimum element of IR. There is an algorithm that produces a shortest
path between any two given vertices that has time complexity O(r(c + rn) +
cκ|IR| + |H||ΓH|, and the diameter of S is at most max{2r − 2, (bκ2 c + 1)r −
1}+ diam(R) + diam(Cay(H; ΓH)) + diam(T ). In particular, the shortest path
algorithm is polynomial in |G| and polylogarithmic in |Q|.

Proof. As we stated earlier, because S is vertex-transitive, w.l.o.g. we may as-
sume that our given vertices are start = (1e, (1e, 0, 0)) and end = (q, (σ, x0, y0)).
From Section 5.2, we need to find a shortest D-walk from (0, 0) to (x0, y0) in
Ḡ0, expand this to a shortest path in S from start to end′ = (q, (1e, x0, y0))
and then extend this path using a shortest path in Cay(H; ΓH) from 1e to σ.

Our analysis in Section 6.1, our algorithm ShortestDWalk in Section 6.2 and
a breadth-first search allow us to compute the shortest Type A D-walk from
(0, 0) to (x0, y0) in Ḡ0 (if it exists) with time complexity O(r2n + c|IR|), and
this walk has length at most 2r − 2 + diam(R).

Our analysis in Section 6.3 (primarily Lemma 13) allows us to compute the
shortest type B D-walk from (0, 0) to (x0, y0) in Ḡ0, bearing in mind the Type A
D-walks already explored, with time complexity O(c(r+κ|IR|)), and the length
of such a walk is at most (bκ2 c+ 1)r − 1 + diam(R).

Our chosen D-walk from (0, 0) to (x0, y0) in Ḡ can be expanded to a path in
S from start to end′ with time complexity O(n) (we treat b1, b2, . . . , bm in the
definition of Q as constants) and then extended to a path from start to end in
S with an additional time complexity O(|H||ΓH|). The length of the resulting
path is greater than the length of our chosen D-walk by diam(Cay(H; ΓH)) +
diam(T ), where diam(T ) is the diameter of the torus T from Section 5.1. The
results follow. �

An identical analysis but where IR = ∅ yields the following result.

Theorem 18. Suppose that we are given a toroidal semidirect product graph
S on Q o G, with parameters as per the construction of S and where IR =
∅. There is an algorithm that produces a shortest path between any two given
vertices that has time complexity O(r2n), and the diameter of S is at most
max{2r − 2, cr2 }+ diam(R) + diam(Cay(H; ΓH)) + diam(T ).
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More refined results than Theorem 17 exist in special cases covered by Lem-
mas 14–16. For example, by Lemma 15, if κ = 1 (as is the case with cube-
connected circulants) and x0 > 0 then we need not worry about looking for
Type B walks.

7. Conclusions

We have developed a framework within which we can build a vast range
of Cayley graphs of semidirect products of abelian groups, which we call col-
lectively toroidal semidirect product graphs, and we have further designed an
efficient shortest-path routing algorithm for any of the graphs defined within
our framework; in the process, we show that the diameter of any of our graphs
is low with regard to the number of vertices. So, we have demonstrated that
our graphs have strong potential for use as interconnection networks (as well
as being of interest purely from a combinatorial perspective; of course, the fact
that our graphs are Cayley graphs means that they are vertex-transitive too).
We present some general comments and directions for further research below.

7.1. More on connectivity

What remains is to fully classify the connectivity of the full class of toroidal
semidirect product graphs. In tandem with this, the wide diameter should be
investigated, where the wide diameter of a graph with connectivity c is the least
value w so that given any two vertices of the graph, there are c pairwise vertex-
disjoint paths from one vertex to the other so that all paths have length at most
w. Of course, the lower the wide diameter of a graph, the intuitively better it
is with regard to data broadcasting and fault tolerance.

7.2. Enhancing exchanged hypercubes

We have already mentioned dual-cubes. However, dual-cubes are special
cases of the more general exchanged cubes, defined as follows. Given s, t ≥
1, the exchanged cube EH(s, t) has vertex set {0, 1}s+t+1 so that the vertex
(u,v, w) ∈ {0, 1}s × {0, 1}t × {0, 1} has neighbours:

• (u,v, w) + es+t+1

• (u,v, w) + ej , for 1 ≤ j ≤ s, if w = 0

• (u,v, w) + es+j , for 1 ≤ j ≤ t, if w = 1,

where ej is the (s+ t+ 1)-tuple with 1 in the jth component and 0 elsewhere,
and addition is modulo 2. The dual-cube DCn is isomorphic to EH(n, n).
Exchanged cubes originated in [24] and have been subsequently investigated as
potential interconnection networks.

A major disadvantage of EH(s, t) is that if s 6= t then EH(s, t) is not even
regular never mind vertex-transitive. However, the graph within our framework
that is analogous to EH(s, t) is the recursive cubes of rings where r is equal to
the least common multiple of s and s + t, with d = s and n = s + t. Research

33



should be undertaken to compare such recursive cubes of rings with exchanged
hypercubes in the hope that they retain the beneficial properties of exchanged
hypercubes but have the added advantage that they are also Cayley graphs.

7.3. Extensions to the framework

Looking at some of the classes of graphs formed using semidirect products
but which fail to fit within our framework, as described in Section 3.5, we now
suggest directions in which we might extend our framework but so as to retain
some sort of control that will enable us to, for example, prove distance properties
or develop routing algorithms. Key to our analysis throughout has been the fact
that routing in a torus is ‘dimensional’ and our generators from ΓS adhere to
these dimensions (see the discussion at the end of Section 5.2). Might we be able
to work with ‘non-dimensional’ generators, so that we might capture classes of
graphs such as wrapped butterflies? Doing so would complicate the relationship
between routing via the Q-edges and dimension-covering in G. Also, might we
be able to vary the action of G on Q from the current ‘wreath-like’ action so as
to capture classes of graphs such as the supertoroids? Intuitively, to do so would
take us out of our ‘dimensional’ environment. Finally, there is a body of work,
of which [6] is representative, on Cayley graphs of abelian groups as potential
interconnection networks where these graphs are known as lattice graphs. Can
we incorporate lattice graphs into our framework (as extensions of the circulant
graphs that currently feature)?
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