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a b s t r a c t 

The first dual-port server-centric datacenter network, FiConn, was introduced in 2009 and there are sev- 

eral others now in existence; however, the pool of topologies to choose from remains small. We propose 

a new generic construction, the stellar transformation, that dramatically increases the size of this pool 

by facilitating the transformation of well-studied topologies from interconnection networks, along with 

their networking properties and routing algorithms, into viable dual-port server-centric datacenter net- 

work topologies. We demonstrate that under our transformation, numerous interconnection networks 

yield datacenter network topologies with potentially good, and easily computable, baseline properties. 

We instantiate our construction so as to apply it to generalized hypercubes and obtain the datacenter 

networks GQ 

� . Our construction automatically yields routing algorithms for GQ 

� and we empirically com- 

pare GQ 

� (and its routing algorithms) with the established datacenter networks FiConn and DPillar (and 

their routing algorithms); this comparison is with respect to network throughput, latency, load balancing, 

fault-tolerance, and cost to build, and is with regard to all-to-all, many all-to-all, butterfly, random, hot- 

region, and hot-spot traffic patterns. We find that GQ 

� outperforms both FiConn and DPillar (sometimes 

significantly so) and that there is substantial scope for our stellar transformation to yield new dual-port 

server-centric datacenter networks that are a considerable improvement on existing ones. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The digital economy has taken the world by storm and com-

letely changed the way we interact, communicate, collaborate,

nd search for information. The main driver of this change has

een the rapid penetration of cloud computing which has enabled

 wide variety of digital services, such as web search and on-

ine gaming, by offering elastic, on-demand computing resources

o digital service providers. Indeed, the value of the global cloud

omputing market is estimated to be in excess of $100 billion [46] .

ital to this ecosystem of digital services is an underlying com-

uting infrastructure based primarily in datacenters [5] . With this

udden move to the cloud, the demand for increasingly large dat-

centers is growing rapidly [20] . 

This demand has prompted a move away from traditional dat-

center designs, based on expensive high-density enterprise-level

witches, towards using commodity-off-the-shelf (COTS) hardware.
∗ Corresponding author at: 3-864 Swan St., Saanich, BC, V8X 2Z3, Canada, Tel.: +1 

78 350 4976. 
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n their production datacenters, major operators have primarily

dopted (and invented) ideas similar to Fat-Tree [3] , Portland [36] ,

nd VL2 [18] ; on the other hand, the research community (sev-

ral major operators included) maintains a diverse economy of

atacenter architectures and designs in order to meet future de-

and [16,20,22,33,39,42] . Indeed, the “switch-centric” datacenters 

urrently used in production datacenters have inherent scalabil-

ty limitations and are by no means a low-cost solution (see, e.g. ,

8,20,21,32] ). 

One approach intended to help overcome these limitations is

he “server-centric” architecture, the first examples of which are

Cell [20] and BCube [19] . Whereas in a switch-centric datacen-

er network (DCN) there are no links joining pairs of servers, in

 server-centric DCN there are no links joining pairs of switches.

his server-centric restriction arises from the circumstance that the

witches in a server-centric DCN act only as non-blocking “dumb”

rossbars. By offloading the task of routing packets to the servers,

he server-centric architecture leverages the typically low utilisa-

ion of CPUs in datacenters to manage network communication.

his can reduce the number of switches used in a DCN, the capa-

ilities required of them, and their cost. In particular, the switches

oute only locally, to their neighbouring servers, and therefore have
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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no need for large or fast routing tables. Thus, a server-centric DCN

can potentially incorporate more servers and be both cheaper to

operate and to build (see [37] for a more detailed discussion). Fur-

thermore, using servers (which are highly programmable) rather

than switches (which have proprietary software and limited pro-

grammability) to route packets will potentially accelerate research

innovation [30] . Of course, the server-centric approach is not a

panacea as packet latency can increase, with the need to handle

routing imposing a computational overhead on the server. 

The server-centric paradigm is currently an area of intensive

study with numerous new server-centric DCNs having been pro-

posed and scrutinized, although there is still much to be done be-

fore server-centric DCNs make it through to production. Since the

advent of DCell and BCube, various server-centric DCNs have been

proposed, some of which further restrict themselves to requiring at

most two ports per server, with FiConn [28] and DPillar [31] being

the most established of this genre. This dual-port restriction is mo-

tivated by the fact that many COTS servers presently available for

purchase, as well as servers in existing datacenters, have two NIC

ports (a primary and a backup port). Dual-port server-centric DCNs

are able to utilise such servers without modification, thus making

it possible to use some of the more basic equipment (available for

purchase or from existing datacenters) in a server-centric DCN and

thereby reduce the building costs. 

The server-centric DCN architecture provides a versatile design

space, as regards the network topology, evidenced perhaps by the

sheer number of fairly natural constructions proposed from 2008

to the present. On the other hand, this pool is small relative to

the number of interconnection networks found in the literature,

i.e. , highly structured graphs with good networking properties. One

of the challenges of identifying an interconnection network suit-

able for conversion to a DCN topology, however, lies in the fact

that the literature on interconnection networks is focused primar-

ily on graphs whose nodes are homogeneous 1 , whereas in both a

switch-centric and a server-centric DCN we have server-nodes and

switch-nodes which have entirely different operational roles. Some

server-centric DCN topologies arise largely from outside the inter-

connection network literature, e.g. , DCell and FiConn, whilst oth-

ers arise from transformations of well-known interconnection net-

works, e.g. , BCube and DPillar. 

The transformations used to obtain BCube and DPillar take ad-

vantage of certain sub-structures in the underlying base graphs of

the interconnection networks in question (generalized hypercubes

and wrapped butterfly networks, respectively) in order to create

a server-centric DCN that inherits beneficial networking proper-

ties such as having a low diameter and fault-tolerant routing al-

gorithms. The limitation, of course, is that not every prospective

base graph has the required sub-structures (cliques and bicliques,

respectively, in the cases of BCube and DPillar). New methods

of transforming interconnection networks into server-centric DCNs

may therefore greatly enlarge the server-centric DCN design space

by lowering the structural requirements on potential base graphs. 

It is with the construction of new dual-port server-centric DCNs

that we are concerned in this paper. In particular, we provide

a generic methodology to systematically transform interconnec-

tion networks, as base graphs, into dual-port server-centric DCNs,

which we refer to as stellar DCNs. The stellar transformation is

very simple and widely applicable: the edges of the base graph are

replaced with paths of length 3 involving two server-nodes each,

and the nodes of the base graph become the switch-nodes of the

stellar DCN (see Fig. 3 ). By requiring very little of the base graph

in the way of structure, the stellar construction greatly increases
1 We disregard the terminal nodes of indirect networks, which are not intrinsic 

to the topology. 

 

 

 

he pool of interconnection networks that can potentially serve as

lueprints to design dual-port server-centric DCN topologies. 

We validate our generic construction in three ways: first, we

rove that various networking properties of the base graph are

reserved under the stellar transformation; second, we build a li-

rary of interconnection networks that suit the stellar transforma-

ion; and third, we empirically evaluate GQ 

� , an instantiation of a

tellar DCN whose base graph is a generalized hypercube, against

oth FiConn and DPillar, and we also compare GQ 

� and its routing

lgorithm (inherited from generalized hypercubes) against what

ight be optimally possible in GQ 

� . This latter validation demon-

trates that not only does our methodology allow us to transport

roperties from interconnection networks to dual-port DCNs in

eneral, but also that a specific application of it yields a very com-

etitive dual-port DCN in comparison with other well-established

ual-port DCNs. 

Our empirical results are extremely encouraging. We employ a

omprehensive set of performance metrics so as to evaluate net-

ork throughput, latency, load balancing capability, fault-tolerance,

nd cost to build, within the context of all-to-all, many all-to-

ll, butterfly, random, hot-region, and hot-spot traffic patterns, and

e show that GQ 

� broadly outperforms both FiConn and DPillar

s regards these metrics, sometimes significantly so. Highlights of

hese improvements are as follows. In terms of aggregate bottle-

eck throughput (a primary metric as regards the evaluation of

hroughput in an all-to-all context), our DCN GQ 

� improves upon

oth FiConn and DPillar (upon the former markedly so). As re-

ards fault-tolerance, our DCN GQ 

� , with its fault-tolerant rout-

ng algorithm GQ 

� -routing (inherited from generalized hypercubes),

utperforms DPillar (and its fault-tolerant routing algorithm DPil-

arMP from [31] ) and competes with FiConn even when we simu-

ate optimal fault-tolerant routing in FiConn (even though such a

ault-tolerant routing algorithm has yet to be exhibited). Not only

oes GQ 

� -routing (in GQ 

� ) tolerate faults better than the respec-

ive routing algorithms in FiConn and DPillar, but when we make

round 10% of the links faulty and compare it with the optimal

cenario in GQ 

� , GQ 

� -routing provides around 95% connectivity and

enerates paths that are, on average, only around 10% longer than

he shortest available paths. When we consider load balancing in

Q 

� , FiConn, and DPillar, with their respective routing algorithms

Q 

� -routing, TOR , and DPillarSP and under a variety of traffic pat-

erns, we find that the situation in GQ 

� is generally improved over

hat in FiConn and DPillar. As we shall see, DPillar performs partic-

larly poorly except as regards the butterfly and hot-region traffic

atterns; indeed, for the hot-region traffic pattern, it performs best.

he improved load balancing in GQ 

� in tandem with the generation

f relatively short paths translates to potential latency savings. 

However, we have only scratched the surface in terms of what

ight be possible as regards the translation of high-performance

nterconnection networks into dual-port server-centric DCNs in

hat we have applied our generic, stellar construction to only one

amily of interconnection networks so as to achieve encouraging

esults. In addition to our experiments, we demonstrate that there

re numerous families of interconnection networks to which our

onstruction might be applied. Whilst our results with generalized

ypercubes are extremely positive, we feel that the generic nature

f our construction has significant potential and scope for further

pplication. 

To summarise, the contributions of this paper are as follows: 

• We propose the star-replaced server-centric DCN construction

as a generic methodology in order to automatically convert

graphs and interconnection networks into ‘stellar’ dual-port

server-centric DCNs; 

• We demonstrate how the properties of the base graph or in-

terconnection network translate so that similar properties are
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now describe the constructions of the DCNs FiConn and DPillar. 

2 A biclique is a graph formed from two independent sets so that every node in 

one independent set is joined to every node in the other independent set. 
3 Meaning that for every pair ( u, v ) of server-nodes, there is an automorphism of 

the network topology that maps u to v . 
inherited by the stellar DCN (consequently, we can often use

existing interconnection networks research); 

• We instantiate our stellar transformation using the well-studied

generalized hypercube family of interconnection networks to

obtain the stellar DCN GQ 

� ; and 

• We evaluate GQ 

� against the state-of-the-art dual-port server-

centric DCNs FiConn and DPillar and find that it yields excellent

comparative performance. 

The rest of the paper is organized as follows. In the next sec-

ion, we give an overview of the design space for dual-port server-

entric DCNs, along with related work, before defining our new

eneric construction in Section 3 and proving that good network-

ng properties of the underlying interconnection network translate

o good networking properties of the stellar DCN. We also instanti-

te our stellar construction in Section 3 so as to generate the DCNs

Q 

� , and in Sections 4 and 5 we describe the methodology of our

mpirical evaluation and the results of this investigation, respec-

ively. We close with some concluding remarks and suggestions

or future work in Section 7 . We refer the reader: to [12] for all

tandard graph-theoretic concepts; to [24,47] for the interplay be-

ween graph theory and interconnection network design; and to

9] for an overview of interconnection networks and their imple-

entation for distributed-memory multiprocessors. We implicitly

efer to these references throughout. 

. The dual-port server-centric DCN design space 

A dual-port server-centric DCN can be built from: COTS servers,

ach with (at most) two network interface card (NIC) ports; dumb

crossbar” switches; and the cables that connect these hardware

omponents together. We define the capability of a dumb crossbar-

witch (henceforth referred to as a switch) as being able to forward

n incoming packet to a single port requested in the packet header

nd to handle all such traffic in a non-blocking manner. Such a

witch only ever receives packets destined for servers directly at-

ached to it. It is never the case that two switches in the network

re directly connected by a cable, as otherwise a switch would nec-

ssarily have some routing capability which by design it does not

ave. 

We take a (primarily) mathematical view of datacenters in or-

er to systematically identify potential DCN topologies, and we ab-

tract a DCN as an undirected graph so as to model only the major

ardware components; namely, the servers and switches are ab-

tracted as server-nodes and switch-nodes, respectively, and the

nterconnecting cables as edges or links, with each link modelling

wo oppositely-oriented and independent communication chan-

els. As our server-centric DCNs are dual-port, our graphs are such

hat every server-node has degree at most 2 and the switch-nodes

orm an independent set in the graph. 

.1. Designing DCNs with good networking properties 

There are well-established performance metrics for DCNs and

heir routing algorithms so that we might evaluate properties such

s network throughput, latency, load balancing capability, fault-

olerance, and cost to build (we will return to these metrics later

hen we outline our methodology, in Section 4 , and undertake our

mpirical analysis, in Section 5 ). Networks that perform well with

espect to these or related metrics are said to have good networking

roperties . Maintaining a diverse pool of potential DCN topologies

ith good networking properties gives DCN designers greater flexi-

ility. There is already such a pool of interconnection networks, de-

eloped over the past 50 years or so, and it is precisely from here

hat the switch-centric DCN fabrics of layer-2 switch-nodes in fat-

rees and related topologies have been adapted (see, e.g. , [3,27] ). 
Adapting interconnection networks to build server-centric 

CNs, which necessarily have a more sophisticated arrangement

f server-nodes and switch-nodes, however, is more complicated.

or example, BCube [19] is built from a generalized hypercube (see

efinition 3.1 ) by replacing the edges of certain cliques, each with

 switch-node connected to the nodes of the clique. In doing so,

Cube inherits well-known routing algorithms for generalized hy-

ercubes, as well as mean-distance, fault-tolerance, and other good

etworking properties. DPillar [31] , which we discuss in detail in

ection 2.4 , is built in a similar manner from a wrapped butterfly

etwork (see, e.g. , [26] ) by replacing bicliques 2 with switch-nodes.

he presence of these cliques and bicliques is inherent in the defi-

itions of generalized hypercubes and wrapped butterfly networks,

espectively, but are not properties of interconnection networks in

eneral. Furthermore, the dual-port property of DPillar is not by

esign of the construction, but is a result of the fact that each node

n a wrapped butterfly is in exactly two maximal bicliques. 

In order to effectively capitalise on a wide range of inter-

onnection networks, for the purpose of server-centric DCN de-

ign, we must devise new generic construction methods, similar

o those used to construct BCube and DPillar but that do not im-

ose such severe structural requirements on the interconnection

etwork used as the starting point. 

.2. Related work 

We briefly survey the origins of the dual-port server-centric

CNs proposed thus far within the literature [21,28–31] , referring

he reader to the original publications for definitions of topologies

ot given below. FiConn [28] is an adaptation of DCell and is un-

elated to any particular interconnection network. DPillar’s origins

31] were discussed above. The topologies HCN and BCN [21] are

uilt by combining a 2-level DCell with another network, later dis-

overed to be related to WK-recursive interconnection networks

11,43] . BCCC [30] is a tailored construction related to BCube and

ased on cube-connected-cycles and generalized hypercubes. Fi-

ally, SWKautz, SWCube, and SWdBruijn [29] employ a subdivision

ule similar to ours, but the focus in [29] is not on the (generic)

enefits of subdividing interconnection networks as much as it is

n the evaluation of those two particular network topologies. The

eader is referred to the surveys [23,40] for more on the current

CN landscape. 

In Section 5 we compare an instantiation of our construction,

amely the dual-port server-centric DCN GQ 

� , to FiConn and DPil-

ar. The rationale for using these DCNs in our evaluation is that

hey are good representatives of the spectrum of dual-port server-

entric DCNs mentioned above: FiConn is a good example of a DCN

hat includes both server-node-to-server-node and server-node-to-

witch-node connections and is somewhat unstructured, whereas

Pillar is server-node symmetric 3 [13] and features only server-

ode-to-switch-node connections. In addition, FiConn is arguably

nrelated to any previously known interconnection network topol-

gy, whilst DPillar is built from, and inherits some of the prop-

rties of, the wrapped butterfly networ k. Various other dual-port

erver-centric DCNs lie somewhere between these two extremes.

otice that neither FiConn nor DPillar can be described as an in-

tance of our generalised construction: FiConn has some server-

odes whose only connection is to a solitary switch-node, and in

Pillar each server-node is connected only to 2 switch-nodes. We
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Fig. 1. A visualisation of FiConn 2,4 . 
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2.3. The construction of FiConn 

We start with FiConn, the first dual-port server-centric DCN to

be proposed and, consequently, typically considered the baseline

such DCN. For any even n ≥ 2 and k ≥ 0, FiConn k , n [28] is a

recursively-defined DCN where k denotes the level of the recursive

construction and n the number of server-nodes that are directly

connected to a switch-node (so, all switch-nodes have degree n ).

FiConn 0, n consists of n server-nodes and one switch-node, to which

all the server-nodes are connected. Suppose that FiConn k , n has b

server-nodes of degree 1 ( b = n when k = 0 ; moreover, no matter

what the value of k, b can always be shown to be even). In order

to build FiConn k +1 ,n , we take b 
2 + 1 copies of FiConn k , n and for ev-

ery copy we connect one server-node of degree 1 to each of the

other b 
2 copies (these additional links are called level k links). The

actual construction of which server-node is connected to which is

detailed precisely in [28] (FiConn 2,4 , as constructed in [28] , can be

visualised in Fig. 1 ); in particular, there is a well-defined naming

scheme where server-nodes of FiConn k , n are named as specific k -

tuples of integers. In fact, although it is not made clear in [28] ,

there is a multitude of connection schemes realising different ver-

sions of FiConn. Note that all of the DCNs we consider in this pa-

per come in parameterized families; so, when we say “the DCN

FiConn”, what we really mean is “the family of DCNs {FiConn k , n : k

≥ 0, n ≥ 2 is even}”. 

In [28] , two routing algorithms are supplied: TOR (traffic-

oblivious routing) and TAR (traffic-aware routing). TAR is intended

as a routing algorithm that dynamically adapts routes given chang-

ing traffic conditions (it was remarked in [28] that it could be

adapted to deal with link or port faults). 

2.4. The construction of DPillar 

The DCN DPillar k , n [31] , where n ≥ 2 is even and k ≥ 2, is

such that n denotes the number of ports of a switch-node and k

denotes the level of the recursive construction; it can be imag-

ined as k columns of server-nodes and k columns of switch-nodes,

arranged alternately on the surface of a cylindrical pillar (see as

an example DPillar 3,6 in Fig. 2 ). Each server-node in some server-

column is adjacent to 2 switch-nodes, in different adjacent switch-
olumns. Each server-column has ( n 2 ) 
k server-nodes, named as

 0 , 1 , . . . , n 2 − 1 } k , whereas each switch-column has ( n 2 ) 
k −1 switch-

odes, named as { 0 , 1 , . . . , n 2 − 1 } k −1 . We remark that in the litera-

ure, our DPillar k , n is usually referred to as DPillar n , k . However, we

ave adopted our notation so as to be consistent with other de-

criptions of DCNs. 

Fix c ∈ { 0 , 1 , . . . , k − 1 } . The server-nodes in server-columns

, c + 1 ∈ { 0 , 1 , . . . , k − 1 } (with addition modulo k ) are ar-

anged into ( n 2 ) 
k −1 groups of n server-nodes so that in

erver-columns c and c + 1 , the server-nodes in group

(u k −1 , . . . , u c+1 , u c−1 , . . . , u 0 ) ∈ { 0 , 1 , . . . , n 2 − 1 } k −1 are the server-

odes named { (u k −1 , . . . , u c+1 , i, u c−1 , . . . , u 0 ) : i ∈ { 0 , 1 , . . . , n 2 − 1 }} .
he adjacencies between switch-nodes and server-nodes are such

hat any server-node in group (u k −1 , . . . , u c+1 , u c−1 , . . . , u 0 ) in

erver-columns c and c + 1 is adjacent to the switch-node of name

(u k −1 , . . . , u c+1 , u c−1 , . . . , u 0 ) in switch-column c . 

In [31] , two routing algorithms are supplied: DPillarSP and DPil-

arMP . The former is a single-path routing algorithm and the latter

s a multi-path routing algorithm. 

While all of the dual-port server-centric DCNs from the liter-

ture have merit, it is clear that a generic method of transform-

ng interconnection networks into dual-port server-centric DCNs

as not previously been proposed and analysed. Having justified

he value in studying the dual-port restriction, and having dis-

ussed the benefits of tapping into a large pool of potentially use-

ul topologies, we proceed by presenting our generic construction

n detail in the next section. 

. Stellar DCNs: a new generic construction 

In this section we present our generic method of transforming

nterconnection networks into potential dual-port server-centric

CNs. We then describe how networking properties of the DCN,

ncluding routing algorithms, are inherited from the intercon-

ection network, and go on to identify a preliminary pool of

nterconnection networks that particularly suit the stellar trans-

ormation. Next, we apply our stellar transformation in detail to

eneralized hypercubes as a prelude to an extensive empirical

valuation in Sections 4 and 5 . The key aspects of our stellar con-

truction are its topological simplicity, its universal applicability,



A. Erickson et al. / Computer Networks 113 (2017) 29–45 33 

Fig. 2. A visualization of DPillar 3,6 . Squares represent switch-nodes, whereas dots represent server-nodes. For the sake of simplicity, the left-most and the right-most server- 

columns are the same (server-column 0). 

Fig. 3. Transforming 4 paths from u to v in G ( left ) into 4 paths from u ′ to v ′ in G � ( right ). 
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nd the tight relationship between the interconnection network

nd the resulting stellar DCN (in a practical networking sense).

hile we present our stellar construction within a graph-theoretic

ramework, we end this section by briefly discussing concrete net-

orking aspects of our construction in relation to implementation.

e remind the reader that we use [9,24,47] as our sources of

nformation for the definitions and the networking properties of

he families of interconnection networks mentioned below; we

se these sources implicitly and only cite other sources when

ertinent. 

.1. The stellar construction 

An interconnection network is an undirected graph together with

ssociated routing algorithms, packet-forwarding methodologies, 

ault-tolerance processes, and so on. However, it suffices for us to

bstract an interconnection network as simply a graph G = (V, E)

hat is undirected and without self-loops. 

Let G = (V, E) be any non-trivial connected graph, which we call

he base graph of our construction. The stellar DCN G 

� is obtained

rom G by placing 2 server-nodes on each link of G and identifying
he original nodes of G as switch-nodes (see Fig. 3 ). We use the

erm “stellar” as we essentially replace every node of G and its in-

ident links with a “star” subnetwork consisting of a hub switch-

ode and adjacent server-nodes. Clearly, G 

� has 2| E | server-nodes

nd | V | switch-nodes, with the degree of every server-node being

 and the degree of every switch-node being identical to the de-

ree of the corresponding node in G . 

We propose placing 2 server-nodes on every link of G so as

o ensure: uniformity, in that every server-node is adjacent to ex-

ctly 1 server-node and exactly 1 switch-node (uniformity, and its

tronger counterpart symmetry, are widely accepted as beneficial

roperties in general interconnection networks); that there are no

inks incident only with switch-nodes (as this would violate the

erver-centric restriction, discussed in the opening paragraph of

ection 2 ); and that we can incorporate as many server-nodes as

eeded within the construction (subject to the other conditions).

n fact, any DCN in which every server-node is adjacent to exactly

 server-node and 1 switch-node and where every switch-node is

nly adjacent to server-nodes can be realised as a stellar DCN G 

� ,

or some base graph G . In addition, the stellar transformation can

e applied to any (non-trivial connected) base graph; that is, the
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Table 1 

Transformation of networking properties of a connected graph G . 

Property G = (V, E) G � 

Nodes/nodes | V | | V | switch-nodes 

2| E | server-nodes 

Node degree/switch-node degree d d 

Edges/links | E | 3| E | (bidirectional) 

Path-length/hop-length x 2 x − 1 ≤ · ≤ 2 x + 1 

Diameter/hop-diameter D 2 D − 1 , 2 D, or 2 D + 1 

Internally-disjoint paths/parallel paths κ κ

Edge-disjoint paths/server-parallel paths γ γ
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transformation does not rely on any non-trivial structural proper-

ties of the base graph. 

3.2. Topological properties of stellar DCNs 

The principal decision that must be taken when constructing a

stellar DCN is in choosing an appropriate base graph G . The good

networking properties discussed in Section 2.1 are underpinned

by several graph-theoretic properties that are preserved under the

stellar transformation: for example, low diameter, high connectiv-

ity, and efficient routing algorithms in the base graph G translate

more-or-less directly into good (theoretical) networking properties

of the stellar graph G 

� , as we now discuss. The DCN designer, hav-

ing specific performance targets in mind, can use this information

to facilitate the selection of a base graph G that meets the require-

ments of the desired stellar DCN. 

3.2.1. Paths 

A useful aspect of our construction is as regards the trans-

formation of paths in G to paths in G 

� . As is usual in the anal-

ysis of server-centric DCNs (see, e.g., [19–21,28] ), we measure a

server-node-to-server-node path P by its hop-length , defined as one

less than the number of server-nodes in P . Accordingly, we pre-

fix other path-length-related measures with hop-; for example, the

hop-length of a shortest path joining two given server-nodes in G 

� 

is the hop-distance between the two server-nodes, and the hop-

diameter of a server-centric DCN is the maximum over the hop-

distances for every possible pair of server-nodes. Let G = (V, E) be

a connected graph and let u, v ∈ V . Let u � and v � be the switch-

nodes of G 

� corresponding to u and v , respectively. Let u ′ and v ′ be

server-node neighbours of u � and v � , respectively, in G 

� . Each ( u , v )-

path P in G , of length m , corresponds uniquely to a ( u ′ , v ′ )-path in

G 

� of hop-length 2 m − 1 , 2 m , or 2 m + 1 . The details are straight-

forward. 

3.2.2. Path-based sub-structures 

The transformation of paths in G to paths in G 

� is the basis for

the transfer of potentially useful sub-structures in G to G 

� so as to

yield good DCN properties. Any useful (path-based) sub-structure

in G , such as a spanning tree, a set of node-disjoint paths, or a

Hamiltonian cycle, corresponds uniquely to a closely related sub-

structure in G 

� . Swathes of research papers have uncovered these

sub-structures in interconnection networks, and the stellar con-

struction facilitates their usage in dual-port server-centric DCNs. It

is impossible to cover this entire topic here, but we describe how

a few of the more commonly sought-after sub-structures behave

under the stellar transformation. 

Foremost are internally node-disjoint paths, associated with

fault-tolerance and load balancing. As the degree of any server-

node in G 

� is 2, one cannot hope to obtain more than 2 internally

node-disjoint paths joining any 2 distinct server-nodes of G 

� . How-

ever, a set of c internally node-disjoint ( u , v )-paths in G corresponds

uniquely to a set of c internally (server- and switch-) node-disjoint

( u � , v � )-paths in G 

� , where u , v , u � , v � , u ′ , and v ′ are as defined above.

This provides a set of c ( u ′ , v ′ )-paths in G 

� , called parallel paths ,

that are internally node-disjoint apart from possibly u � and v � (see

Fig. 3 ). It is trivial to show that the minimum number of parallel

paths between any pair of server-nodes, not connected to the same

switch-node, in G 

� is equal to the connectivity of G . 

By reasoning as above, it is easy to see that a set of c edge-

disjoint ( u , v )-paths in G becomes a set of c internally server-node-

disjoint ( u ′ , v ′ )-paths in G 

� , with u , v , u � , v � , u ′ , and v ′ defined as

above; we shall call these server-parallel paths . The implication is

that as any two of these paths share only the links ( u ′ , u � ) and

( v � , v ′ ), a high value of c may be leveraged to alleviate network traf-
c congestion as well as fortify the network against server-node

ailures. 

On a more abstract level, consider any connected spanning sub-

tructure H of G , such as a Hamiltonian cycle or a spanning tree.

et H 

� be the corresponding sub-structure in G 

� (under the path-

o-path mapping described above) and observe that each edge of

 not contained in H corresponds to two adjacent server-nodes in

 

� not contained in H 

� . On the other hand, every server-node not

n H 

� is exactly one hop away from a server-node that is in H 

� ; so

ithin an additive factor of one hop, H 

� is just as “useful” in G 

� as

 is in G . In fact, if H is a spanning tree in G then we can extend

 

� in G 

� by augmenting it with pendant edges from switch-nodes

o that what results is a spanning tree in G 

� containing all server-

odes of G 

� (and not just those in the original H 

� ). By the same

rinciple, non-spanning sub-structures of G , such as those used

n one-to-many, many-to-many, and many-to-one communication

atterns, also translate to useful sub-structures in G 

� . 

We summarise the relationship between properties of G and

 

� that we have discussed so far in Table 1 where corresponding

roperties for G and G 

� are detailed. It should now be apparent

hat the simplicity of our stellar transformation enables us to im-

ort good networking properties from our base graphs to our stel-

ar DCNs where these properties are crucial to the efficacy of a

CN. 

We close this sub-section with a brief discussion of the trans-

erral of routing algorithms under the stellar transformation and

f the as yet unexplored potential of the stellar transformation as

egards other important aspects of DCNs. A routing algorithm for

n interconnection network G is effectively concerned with an ef-

cient computation over some communication sub-structures. For

xample, in the case of unicast routing from u to v , we may com-

ute one or more ( u , v )-paths (and route packets over them), or for

 broadcast we may compute one or more spanning trees. Routing

lgorithms can be executed at the source node or in a distributed

ashion, and they can be deterministic or non-deterministic; what-

oever the process, the resulting output is a communication sub-

tructure over which packets are sent from node to node. We dis-

ussed above the correspondence between communication sub-

tructures in G and those in G 

� ; we now observe that, in addition,

ny routing algorithm on G can be simulated on G 

� with the same

ime complexity. We leave the details to the reader (but we will

nstantiate this later when we build the stellar DCNs GQ 

� ). 

While we undertake an extensive investigation into the con-

ept of a stellar transformation in this paper, there are numerous

ther aspects of DCNs that intuitively might benefit from the stel-

ar construction. Consider the bisection width which is the mini-

um number of links that must be removed to partition the net-

ork into two (roughly) equal halves. The bisection width is pri-

arily used in order to evaluate throughput but is also relevant to

ault-tolerance (we say a little more about its relevance to through-

ut and our own experiments at the end of Section 4.5 ). Calcu-

ating the bisection width of networks is notoriously difficult; al-

orithmically, it is NP -hard in general, and the precise analyti-
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al value for many relatively simple networks remains unknown

see [4] and the references therein). Given the nature of the stel-

ar construction, it seems plausible that we might be able to use

nown bisection width values of the base graph to analytically de-

ermine (estimates of) the bisection width of the stellar DCN. In

ddition, consider the over-subscription ratio , defined in [3] as ‘the

atio of the worst-case achievable aggregate bandwidth among the

nd hosts to the total bisection bandwidth of a particular com-

unication topology’. Roughly speaking, over-subscription is con-

erned with the factor by which the available throughput of links

r servers falls below the required throughput (on occasion, it is

sed imprecisely within the literature so that its intended defi-

ition is unclear). An important practical aspect of a DCN is that

here should be some control over the over-subscription ratio. Our

tellar transformation is parameterized by the base graph G , and

he choice of this parameter provides considerable scope as to the

hoice of bisection width (which controls the over-subscription ra-

io, according to the above definition). The key point is that as well

s some demonstrably provable advantages of the stellar transfor-

ation (in relation to hop-length, hop-diameter, paths, routing al-

orithms, and so on), the nature of the construction makes many

ther advantages plausible too. We say more about bisection width

nd over-subscription in Sections 6 and 7 . 

.3. A pool of suitable base graphs 

So far, we have referred to an interconnection network as a

olitary object. However, interconnection networks (almost always)

ome in families where there are parameters the values for which

recisely delineate the family members. For example the hyper-

ube Q n is parameterized by the degree n of the nodes, and so

eally by “the hypercube Q n ” we mean “the family of hypercubes

 Q n : n = 1 , 2 , . . . , } ”. For the rest of this sub-section we will be

recise and speak of families of interconnection networks as we

eed to focus on the parameters involved. To ease understanding,

hen there is more than one parameter involved in some defini-

ion of a family of interconnection networks and these parameters

ppear as subscripts or in tuples in the denotation, we list param-

ters relating to the dimension of tuples or the depth of recursion

rst with parameters referring to the size of some component-set

oming afterwards (we have done this so far with FiConn k , n and

Pillar k , n ). We remark that this is sometimes at odds with stan-

ard practice in the literature. 

We validate our claim that many families of interconnection

etworks suit the stellar construction by highlighting several that,

rst, have parameters flexible enough to yield interconnection net-

orks of varying and appropriate size and degree, and, second,

re known to possess good networking properties. The first goal

s to identify families of interconnection networks that have suit-

ble combinations of degree and size, bearing in mind that today’s

CN COTS switches have up to tens of ports, with 48 being typi-

al, while conceivable (but not necessarily in production) sizes of

CNs range from tens of server-nodes up to, perhaps, 5 million in

he near future. An illustration of a family of interconnection net-

orks lacking this flexibility is the family of hypercubes, where the

ypercube Q n necessarily has 2 n nodes when the degree is fixed at

 ; this translates to a stellar DCN with n -port switch-nodes and,

ecessarily, n 2 n server-nodes. As such, there is a lack of flexibil-

ty, in terms of the possible numbers of server-nodes, and if we

ere to build our stellar DCNs using commodity switches with

8 ports then we would have to have 48 × 2 48 servers which is

learly impossible. Another illustration of a family of interconnec-

ion networks lacking flexibility is the family of cube-connected

ycles { CCC ( n ): n ≥ 3}, where CCC ( n ) is obtained from a hyper-

ube Q n via a transformation similar to our stellar transformation:

 new nodes are placed on each edge; the new nodes adjacent to
ome old node are joined (systematically) in a cycle of length n ;

nd the old nodes, and any adjacent edges, are removed. So, CCC ( n )

s regular of degree 3 and consequently unsuitable for our stellar

ransformation. 

We now look at some families of interconnection networks that

re suitable for our stellar transformation. It is too much to list all

f the good networking properties of the interconnection networks

iscussed below. However, it should be remembered that, from

bove, any path, path-based sub-structure, and routing algorithm

s immediately inherited by the stellar DCN; consequently, we fo-

us on the flexibility of the parameterized definition in what fol-

ows and refer the reader to other sources (including [9,24,47] ) for

ore details as regards good networking properties. Besides: the

act that these families of interconnection networks have featured

o strongly within the research literature is testament to their good

etworking properties. Also, the families of interconnection net-

orks mentioned below are simply illustrations of interconnection

etworks for which our stellar transformation has potential and

here are many others not mentioned (see, e.g. , [24,47] ). 

Tori (also known as toroidal meshes) have been widely stud-

ed as interconnection networks; indeed, tori form the intercon-

ection networks of a range of distributed-memory multiproces-

or computers (see, e.g. , [9] ). The uniform version of a torus is

he n -ary k -cube Q k , n , where k ≥ 1 and n ≥ 3, whose node-set

s { 0 , 1 , . . . , n − 1 } k and where there is an edge joining two nodes

f, and only if, the nodes differ in exactly one component and the

alues in this component differ by 1 modulo n ; hence, Q k , n has

 

k nodes and kn k edges, and every node has degree 2 k . There is

ome, though limited, scope for using n -ary k -cubes in our stellar

onstruction. For example, if we use switch-nodes with 16 ports to

uild our DCN then this means that k = 8 ; choosing n = 3 , 4, or 5

esults in our stellar DCN having 104,976 server-nodes, 1,048,576

erver-nodes, or 6,250,0 0 0 server-nodes, respectively. We get more

ariation if we allow the sets of values in different components to

iffer; that is, we use mixed-radix tori. However, it is not really

easible to use switch-nodes with more than 16 ports in a torus-

ased stellar construction because of how torus topologies scale;

ot unless one were to use, for example, switch-nodes with 64

orts in order to implement 4 switch-nodes with 16 ports. This is

n interesting and as yet unexplored methodology that we expand

pon in our conclusions. 

Circulant graphs have been studied extensively in a networking

ontext, where they are often called multi-loop networks. Let S be

 set of integers, called jumps , with 1 ≤ s ≤ � N/ 2 � , for each s ∈ S ,

nd where N ≥ 2. A circulant G ( N ; S ) has node set { 0 , 1 , . . . , N − 1 } ,
here node i is connected to nodes i ± s ( mod N) , for each s ∈ S .

 circulant has N nodes and at most N | S | edges, and the degree of

very node is approximately 2| S | (depending upon the relative val-

es of N and the integers in S ); consequently, the parameters pro-

ide significant general flexibility. Illustrations of good networking

roperties of circulants can be found in, for example, [7,25,34] . 

The wrapped butterfly network BF ( k , n ) can be obtained from

Pillar k , n by replacing all switch-nodes with bicliques (joining

erver-nodes in adjacent columns); consequently, B ( k , n ) has k ( n 2 ) 
k 

odes and k ( n 2 ) 
k +1 edges, and each node has degree n . Thus, by

arying k and n , there is reasonable scope for flexibility in terms of

he sizes of stellar DCNs. Illustrations of the good networking prop-

rties of wrapped butterfly networks can be found in, for example,

17,44] . Note that transforming a wrapped butterfly networ k to ob-

ain DPillar is different to transforming it according to the stellar

ransformation; the two resulting DCNs are combinatorially very

istinct. 

The de Bruijn digraph dB ( k , n ), where k ≥ 1 and n ≥ 2 is

ven, is a graph with node-set { 0 , 1 , . . . , n 2 − 1 } k . There is a di-

ected edge from (s k −1 , s k −2 , . . . , s 0 ) to (s k −2 , s k −3 , . . . , s 0 , α) , for
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each α ∈ { 0 , 1 , . . . , n 2 − 1 } . Undirected de Bruijn graphs are obtained

by regarding all directed edges as undirected and removing self-

loops and multiple edges; such graphs are not regular but nearly

so, with most of the ( n 2 ) 
k nodes having degree n although some

have degree n − 1 or n − 2 . Consequently, by varying the values of

k and n , there is good flexibility in terms of the sizes of stellar

DCNs. Illustrations of the good networking properties of de Bruijn

graphs can be found in, for example, [15,38] . Note that de Bruijn

graphs have been studied as server-centric DCNs in [37] but these

DCNs are not dual-port. 

The arrangement graph A k , n , where n ≥ 2 and 1 ≤ k ≤ n −
1 , has node-set { (s k −1 , s k −2 , . . . , s 1 , s 0 ) : s i ∈ { 0 , 1 , . . . , n − 1 } , s i 	 =
s j , i, j = 0 , 1 , . . . , k − 1 } . There is an edge joining two nodes if, and

only if, the nodes are identical in all but one component. Hence,

the arrangement graph A k , n has n ! 
(n −k )! 

nodes and k (n −k ) n ! 
2(n −k )! 

edges,

and is regular of degree k (n − k ) . The family of arrangement graphs

includes the well-known star graphs as a sub-family, and there is

clearly considerable flexibility in their degree and size. 

3.4. The stellar DCNs GQ 

� 

Having hinted that there are various families of interconnection

networks to which our stellar transformation might sensibly be ap-

plied, we now apply the stellar transformation to one specific fam-

ily in detail: the family of generalized hypercubes [6] . We provide

below more details as regards the topological properties of and

routing algorithms for generalized hypercubes as we will use these

properties and algorithms in our experiments in Sections 4 and 5 .

We choose generalized hypercubes because of their flexibility as

regards the stellar construction, their good networking properties,

and the fact that they have already featured in DCN design as tem-

plates for BCube. 

Definition 3.1. The generalized hypercube GQ k , n , where k ≥ 1 and

n ≥ 2, has node-set { 0 , 1 , . . . , n − 1 } k and there is an edge joining

two nodes if, and only if, the names of the two nodes differ in

exactly one component. 

Consequently, GQ k , n has n k nodes and 

1 
2 k (n − 1) n k edges, and

is regular of degree k (n − 1) . Also, GQ k , n has diameter k and con-

nectivity k (n − 1) . Hence, GQ 

� 
k,n 

has hop-diameter 2 k + 1 and there

are k (n − 1) parallel paths between any two distinct server-nodes. 

Suppose that we wished to use 48-port switch-nodes (and uti-

lize all switch-ports) in a stellar DCN built from GQ k , n . We might

choose ( k , n ) as (2, 25), (3, 17), or (4, 13) with the result that the

number of server-nodes is 30,0 0 0 for GQ 

� 
2 , 25 , 235,824 for GQ 

� 
3 , 17 ,

or 1,370,928 for GQ 

� 
4 , 13 

, respectively (of course, we can vary this

number of server-nodes if we do not use all switch-ports or if we

use switch-nodes with less than 48 ports). 

The stellar construction allows us to transform existing rout-

ing algorithms for the base graph GQ k , n into routing algorithms

for GQ 

� 
k,n 

. We describe this process using the routing algorithms

for GQ k , n surveyed in [48] . Let u = (u k −1 , u k −2 , . . . , u 0 ) and v =
(v k −1 , v k −2 , . . . , v 0 ) be two distinct nodes of GQ k , n . The basic rout-

ing algorithm for GQ k , n is dimension-order (or e-cube ) routing

where the path from u to v is constructed by sequentially replac-

ing each u i by v i , for some predetermined ordering of the coor-

dinates, say i = 0 , 1 . . . , k − 1 . As we mentioned above, dimension-

order routing translates into a shortest-path routing algorithm for

GQ 

� 
k,n 

with unchanged time complexity, namely O ( k ). 

We introduce a fault-tolerant mechanism called intra-

dimensional routing by allowing the path to replace u i by v i in two

steps, using a local proxy , rather than in one step, as described in

dimension-order routing. Suppose, for example, that one of the

edges in the dimension-order route from u to v is faulty; say, the

one from u = (u k −1 , u k −2 , . . . , u 1 , u 0 ) to x = (u k −1 , u k −2 , . . . , u 1 , v 0 )
assuming that u 0 and v 0 are distinct). In this case we can try to

op from u to (u k −1 , u k −2 , . . . , u 1 , x 0 ) , where u 0 	 = x 0 	 = v 0 , and

hen to x . 

Inter-dimensional routing is a routing algorithm that extends

ntra-dimensional routing so that if intra-dimensional routing fails,

ecause a local proxy within a specific dimension cannot be used

o re-route round a faulty link, an alternative dimension is chosen.

or example, suppose that in GQ k , n intra-dimensional routing has

uccessfully built a route over dimensions 1 and 2 but has failed

o re-route via a local proxy in dimension 3. We might try and

uild the route instead over dimension 4 and then return and try

gain with dimension 3. Note that if a non-trivial path extension

as made in dimension 4 then this yields an entirely different lo-

ality within GQ k , n when trying again over dimension 3. 

However, in our upcoming experiments we implement the most

xtensive fault-tolerant, inter-dimensional routing algorithm pos-

ible, called GQ 

� -routing , for the stellar DCN GQ 

� 
k,n 

, whereby we

erform a depth-first search of the dimensions and we use intra-

imensional routing to cross each dimension wherever necessary

and possible). In addition, if GQ 

� -routing fails to route directly in

his fashion then it attempts four more times to route (as above)

rom the source to a randomly chosen server-node, and from there

o the destination. We have chosen to make this extensive search

f possible routes in order to test the maximum capability of GQ 

� -

outing ; however, we expect that in practice the best performance

ill be obtained by limiting the search in order to avoid certain

orst-case scenarios. The precise implementation details of GQ 

� -

outing can be found in the software release of INRFlow [14] (see

ection 4.6 ). Finally, it is easy to see that GQ 

� -routing can be im-

lemented as a distributed algorithm if a small amount of extra

eader information is attached to a path-probing packet, similarly

o the suggestion in [28] for implementing TAR (Traffic Aware Rout-

ng) in FiConn. 

.5. Implementing stellar DCNs 

Implementing the software suite from scratch would require

 software infrastructure that supports through-server end-to-

nd communications. This could be implemented either on top

f the transport layer (TCP) so as to simplify development,

ince most network-level mechanisms (congestion control, fault-

olerance, quality of service) would be provided by the lower lay-

rs. Alternatively, it could be implemented on top of the data-link

ayer to improve the performance, since a lower protocol stack will

esult in the faster processing of packets. The latter would require

 much higher implementation effort in order to deal with conges-

ion and reliability issues. At any rate, the design and development

f a software suite for server-centric DCNs is outside the scope of

his paper, but may be considered in the future. 

. Methodology 

The good networking properties discussed in Section 2.1 guide

ur evaluation methodology; they are network throughput, latency,

oad balancing capability, fault-tolerance, and cost to build. These

roperties are reflected through performance metrics, and in this

ection we explain how we use aggregate bottleneck through-

ut, distance metrics, connectivity, and paths and their congestion,

ombined with a selection of traffic patterns, in order to evalu-

te the performance of our DCNs and routing algorithms. In par-

icular, we describe and justify the use of our simulation tool in

ection 4.6 . 

Our methodological framework is as follows. First, we take the

osition, similar to Popa et al. [37] , that the cost of a network is

f fundamental importance. No matter what purpose a network is

ntended for, the primary objective is to maximise the return on
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Table 2 

Basic properties of the selected DCNs. 

Topology GQ � 3 , 10 GQ � 4 , 6 FiConn 2,24 DPillar 4,18 

Server-nodes 27 ,0 0 0 25 ,920 24 ,648 26 ,244 

Switch-nodes 10 0 0 1296 1027 2916 

Switch-ports 27 20 24 18 

Links 81 ,0 0 0 77 ,760 67 ,782 104 ,976 

Diameter 7 9 7 7 

Parallel paths 27 20 unknown 9 (see [31] ) 
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Fig. 4. The component costs per server-node of FiConn and DPillar, relative to that 

of GQ � , for ρ ∈ {0.01, 0.02, 0.4, 0.8, 1.6}. 
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m  
he cost of a DCN. While there are several elements that factor

nto the cost of a DCN, including operational costs, our concern

s with the capital costs of purchasing and installing the compo-

ents we are modelling: servers, switches, and cables. Having cal-

ulated these costs (in Section 4.1 below), where appropriate (in

ur evaluation in Section 5.1 ) we normalise with respect to cost

nd proceed by both quantitatively and qualitatively interpreting

he resulting multi-dimensional metric-based comparison. Subse-

uently, (from Section 5.2 onwards) we focus on 4 carefully cho-

en DCNs, namely GQ 

� 
3 , 10 , GQ 

� 
4 , 6 , FiConn 2, 24 , and DPillar 4, 18 , and

valuate these DCNs in some detail. We have selected these DCNs

s their properties are relevant to the construction of large-scale

CNs: they each have around 25,0 0 0 server-nodes and use switch-

odes of around 24 ports. Table 2 details some of their topological

roperties. 

.1. Network cost 

We follow Popa et al. [37] and assume that the cost of a switch

s proportional to its radix (this is justified in [37] for switches

f radix up to around 100–150 ports). Let c s be the cost of a

erver, let c p be the cost of a switch-port, and let c c be the av-

rage cost of a cable. We make the simplifying assumption that

he average cost of a cable c c is uniform across DCNs with N

ervers within the families GQ 

� , FiConn, and DPillar, and, further-

ore, that the average cost of a cable connected only to servers is

imilar to that of a cable connected to a switch. Thus, the cost of

 DCN GQ 

� with N server-nodes is N(c p + c c + c s + 

c c 
2 ) ; the cost of

 DCN FiConn k , n with N server-nodes is N(c p + c c + c s + 

c c 
2 − c c 

2 k +1 
) ,

ince it contains N 
2 k 

server-nodes of degree 1 [28] ; and the cost

f a DCN DPillar with N server-nodes is N(2(c p + c c ) + c s ) . Next,

e express c p = ρc s and c c = γ c s so that the costs of the server-

odes become Nc s (ρ + γ + 1 + 

γ
2 ) , Nc s (ρ + γ + 1 + 

γ
2 −

γ

2 k +1 
) , and

c s (2(ρ + γ ) + 1) , respectively. A rough estimate is that realistic

alues for ρ lie in the range [0.01, 0.1], and that realistic values for

lie in the range [0.01, 0.6]; we choose the ranges conservatively

ecause there is great variation in the cost of components, e.g. , be-

ween copper and optical cables, as well as how we account for

he labour involved in installing them. Our estimates stem from

37] where a typical server is quoted at around $2500, a typi- 

al cable at around $50, and the cost of a switch-port at around

100, giving ρ = 0 . 04 and γ = 0 . 02 . Consequently, we normalise

ith respect to the aggregated component cost per server-node in

Q 

� , letting c s (ρ + γ + 1 + 

γ
2 ) = 1 , and plot component costs per

erver-node against γ in Fig. 4 , for the representative selection ρ ∈
0.01, 0.02, 0.4, 0.8, 1.6}; in Fig. 4 , there is one graph for each DCN

nd for each of the 5 values for ρ , with the 5 graphs correspond-

ng to FiConn being almost indistinguishable from one another. The

pshot is that the higher the value for ρ , the higher the cost of

Pillar, and for the specific choices of ρ and γ mentioned above,

Pillar could be up to 20% more expensive and FiConn around 4%

ess expensive than GQ 

� when all DCNs have the same number of

erver-nodes. Perhaps the most realistic values of ρ and γ , how-

ver, yield a DPillar that is only about 10% more expensive and

iConn that is only about 2% less expensive. 
.2. Hop-distance metrics 

The number of servers a packet flow needs to travel through

ignificantly affects the flow’s latency. In addition, for each server

n the path, the compute and memory overheads are impacted

pon: in a server-centric DCN (with currently available COTS hard-

are), the whole of the protocol stack, up to the application level,

eeds to be processed at each server which can make message

ransmission noticeably slower than in a switch-centric network

here lower layers of the protocol stack are employed and use op-

imised implementations. 

The paths over which flows travel are computed by rout-

ng algorithms, and it may not be the case that shortest-paths

re achievable by available routing algorithms and without global

ault-knowledge; large-scale networks like DCNs are typically re-

tricted to routing algorithms that use only local knowledge of

ault locations. As such, the performance of the routing algo-

ithm is perhaps more important than the hop-diameter or mean

op-distance of the topology itself. Therefore, we use distance-

elated metrics that reveal the performance of the topology and

he routing algorithm combined, namely routed hop-diameter and

outed mean hop-distance , as well as for the topology alone (where

ppropriate), namely hop-diameter and mean hop-distance (see

ection 2.1 ). This allows us to (more realistically) assess both the

otential of the topologies and the actual performance that can be

xtracted from them when implemented with currently available

outing algorithms. 

.3. Aggregate bottleneck throughput 

The aggregate bottleneck throughput ( ABT ) is a metric introduced

n [19] and is of primary interest to DCN designers due to its

uitability for evaluating the worst-case throughput in the all-to-

ll traffic pattern, which is extremely significant in the context of

CNs (see Section 4.5 ). The reasoning behind ABT is that the per-

ormance of an all-to-all operation is limited by its slowest flow,

.e. , the flow with the lowest throughput. The ABT is defined as

he total number of flows times the throughput of the bottleneck

ow ; that is, of the bottleneck link sustaining the most flows (here,

 link is a directed link ( x , y ); the link ( y , x ) might sustain a differ-

nt number of flows). Formally, the ABT of a network of size N is

qual to 

N(N − 1) b 

F 
(1) 

here F is the number of flows in the bottleneck link and b is the

andwidth of a link (which we simply assume to be 1 throughout).

In our experiments, the bottleneck flow is determined experi-

entally using the implementations of actual routing algorithms;
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this is atypical of ABT calculations ( e.g. , see [32] ), where ordinarily

shortest-paths are used, but our approach facilitates a more real-

istic evaluation. We measure ABT using GQ 

� -routing for GQ 

� , TOR

for FiConn, and DPillarSP for DPillar , assuming N(N − 1) flows and

a bandwidth of 1 unit per directional link, where N is the number

of server-nodes. Since datacenters are most commonly used as a

stream processing platform, and are therefore bandwidth limited,

this is an extremely important performance metric in the context

of DCNs. Given that ABT is only defined in the context of all-to-all

communications, for other traffic patterns we focus on the number

of flows in the bottleneck as an indicator of congestion propensity

(we say more about these traffic patterns and our experiments in

Section 4.5 ). 

We should explain our choice of routing algorithm in FiConn

and DPillar as regards our ABT analysis. In [28] , it was shown that

TOR yields better performance for all-to-all traffic patterns than

TAR . In [31] , the all-to-all analysis (actually, it is a many all-to-all

analysis) showed that DPillarSP performs better than DPillarMP . We

have chosen TOR and DPillarSP so as not to disadvantage FiConn

and DPillar when we compare against GQ 

� and GQ 

� -routing . 

4.4. Fault-tolerance 

High reliability is of the utmost importance in datacenters, as it

impacts upon the business volume that can be attracted and sus-

tained. When scaling out to tens of thousands of servers or more,

failures are common, with the mean-time between failures (MTBF)

being as short as hours or even minutes. As an example, consider

a datacenter with 25,0 0 0 servers, 10 0 0 switches, and 75,0 0 0 links,

each with an optimistic average lifespan of 5 years. Based upon

a very rough estimate that the number of elements divided by the

average lifespan results in the numbers of failures per day, the sys-

tem will have an average of about 13 server faults per day, 40 link

faults per day, and 1 switch fault every 2 days. In other words,

failures are ubiquitous and so the DCN should be able to deal with

them in order to remain competitively operational. Any network

whose performance degrades rapidly with the number of failures

is unacceptable, even if it does provide the best performance in a

fault-free environment. 

We investigate how network-level failures affect routed connec-

tivity , defined as the proportion of server-node-pairs that remain

connected by a path computable by a given routing algorithm, as

well as how they affect routed mean hop-distance. Our study fo-

cuses on uniform random link failures in particular, because both

server-node and switch-node failures induce link failures, and also

because the sheer number of links (and NICs) in a DCN implies

that link-failures will be the most common event. A more de-

tailed study of failure events will be conducted in follow-up re-

search, in which we will consider correlated link, server-node, and

switch-node failures. We consider failure configurations with up

to a 15% network degradation, where we randomly select, with

uniform probability, 15% of the links to have a fault. Furthermore,

we consider only bidirectional failures, i.e. , where links will either

work in both directions or in neither. The rationale for this is that

the bidirectional link-failure model is more realistic than the unidi-

rectional one: failures affecting the whole of a link ( e.g. , NIC failure,

unplugged or cut link, or switch-port failure) are more frequent

than the fine-grained failures that would affect a single direction.

In addition, once unidirectional faults have been detected they will

typically be dealt with by disabling the other direction of the failed

link (according to the IEEE 802.3ah EFM-OAM standard). We also

investigate unrouted connectivity , namely the proportion of source-

destination pairs, from some given set of pairs, that are connected

by a path, as ascertained by BFS. Note that BFS will always find a

path if it exists (even in the presence of faults), whilst most rout-

ing algorithms do not provide this guarantee. 
As regards routed connectivity and routed mean hop-distance,

e consider GQ 

� with GQ 

� -routing , FiConn with breadth-first

earch (BFS), and DPillar with DPillarMP . Again, we explain our

hoice of routing algorithms. As regards FiConn, TAR is a dis-

ributed “heuristic” algorithm devised so as to improve network

oad balancing with bursty and irregular traffic patterns, and was

either optimised for nor tested on outright faulty links. In addi-

ion, TAR computes paths that are 15–30% longer in these scenarios

han TOR does. However, TOR is not fault-tolerant and so we sim-

ly use BFS. In short, we have given FiConn preferential treatment

this makes the performance of GQ 

� against FiConn, described in

ection 5.2 , all the more impressive). As regards DPillar, DPillarMP

s fault-tolerant whereas DPillarSP is not. 

.5. Traffic patterns 

We now describe the traffic patterns used in our evaluation, the

rimary one being the all-to-all traffic pattern. All-to-all communi-

ations are extremely relevant as they are intrinsic to MapReduce,

he preferred paradigm for data-oriented application development;

ee, for example, [10,32,45] . In addition, all-to-all can be consid-

red a worst-case traffic pattern for two reasons: ( a ) the lack of

patial locality; and ( b ) the high levels of contention for the use of

esources. 

Our second set of experiments focuses on specific networks

osting around 25,0 0 0 server-nodes and evaluates them with a

ider collection of traffic patterns; we use the routing algorithms

Q 

� -routing, TOR , and DPillarSP . Apart from all-to-all, we also con-

ider the five other traffic patterns many all-to-all, butterfly, ran-

om, hot-region, and hot-spot. In many all-to-all , the network is

plit into disjoint groups of a fixed number of server-nodes with

erver-nodes within a group performing an all-to-all operation. Our

valuation shows results for groups of 10 0 0 server-nodes but these

esults are consistent with ones for groups of sizes 500 and 50 0 0.

his workload is less demanding than the system-wide all-to-all,

ut can still generate a great deal of congestion. It aims to emulate

 typical tenanted cloud datacenter in which there are many in-

ependent applications running concurrently. We assume a typical

opology-agnostic scheduler and randomly assign server-nodes to

roups. The butterfly traffic pattern is a “logarithmic implementa-

ion” of a pattern such as all-to-all as each server-node only com-

unicates with other server-nodes at hop-distance 2 k , for each k ∈
 

0 , . . . , 
 log(N) � − 1 } (see [35] for more details). This workload sig-

ificantly reduces the overall utilization of the network when com-

ared with the all-to-all traffic pattern and aims to evaluate the

ehaviour of networks when the traffic pattern is well-structured.

e consider a random traffic pattern in which we generate one

illion flows (we also studied other numbers of flows but the re-

ults turn out to be very similar to those with one million flows).

or each flow, the source and destination are selected uniformly

t random. Our hot-region traffic pattern is such that we gener-

te traffic so that 1 
4 of the traffic goes to 1 

8 of the server-nodes,

ith the rest uniform. Finally, flows in our hot-spot traffic pattern

re generated uniformly at random with the exception that a pre-

etermined hot-spot server-node is 100 × more likely to be the

estination of each flow than any other given server-node. These

dditional collections of experiments provide further insights into

he performance achievable with each of the networks and allow

 more detailed evaluation of propensity to congestion, load bal-

ncing, and latency. Fig. 5 depicts example trace matrices for the

raffic patterns many all-to-all, butterfly, hot-region, and hot-spot

n a DCN with 96 server-nodes. 

We close with a remark related to throughput and the role

f the bisection width. The bisection width is used to obtain a

pper bound on the throughput of a bisection channel, under

he assumption of perfectly distributed, uniform traffic; see, e.g. ,



A. Erickson et al. / Computer Networks 113 (2017) 29–45 39 

Fig. 5. Representative trace matrices for a 96-server-node DCN. From left to right : many all-to-all, butterfly, hot-region, and hot-spot. The many all-to-all traffic pattern is 

applied to a random permutation of the server-nodes, and is drawn unshuffled here only for clarity. 
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4 The points plotted in Figs. 6–12 represent actual DCNs. Lines segments connect 

adjacent points, including some points outside the range of the plot, in order to 

reveal trends as the number of server-nodes changes. 
9, Section 3.3.1] . This bottleneck throughout can then be imme-

iately used to obtain the ABT (under the all-to-all traffic pattern)

r the ideal throughput (under the random traffic pattern). This

nalytical methodology does not consider all of the practical char-

cteristics of the design nor can it incorporate all the intricacies

nd subtleties of how traffic flows across a network. For this rea-

on, it is common practice to bypass bisection width and deter-

ine throughput figures empirically, which is exactly what we do

n our experimental work. 

.6. Software tools 

Our software tool, Interconnection Networks Research Flow

valuation Framework (INRFlow) [14] is specifically designed for

esting large-scale, flow-based systems such as DCNs with tens or

undreds of thousands of nodes, which would prohibit the use

f packet-level simulations. The results obtained from INRFlow in-

orm a detailed evaluation within the intended scope of our paper.

INRFlow is capable of evaluating network topologies in two

ays. Within INRFlow we can undertake a BFS for each server-

ode; this allows us to compute the hop-length of the shortest path

etween any two server-nodes and also to examine whether two

erver-nodes become disconnected in the presence of link failures.

s we have noted in Section 4.2 , results on shortest paths are of

imited use when not studied in conjunction with a routing algo-

ithm. Consequently, INRFlow also provides path and connectivity

nformation about a given routing algorithm. We use the different

outing algorithms within our DCNs as we have described so far in

his section. The operation of the tool is as follows: for each flow

n the workload, it computes the route using the required routing

lgorithm and updates link utilization accordingly. Then it reports

 large number of statistics of interest, including the metrics dis-

ussed above. 

Simulation . Simulation is the accepted methodology as regards

he empirical investigation of DCNs. For example, as regards the

CNs FiConn, HCN, BCN, SWKautz, SWCube, and SWdBruijn, all

mpirical analysis is undertaken by simulation; on the other hand,

Cell uses a test-bed of only 20 servers, BCube uses a test-bed

f only 16 servers, and CamCube [1] uses a test-bed of only 27

ervers. We argue that for the scenarios for which server-centric

CNs are intended, where the DCN will be expected to have thou-

ands (if not millions) of servers (in future), experiments with a

mall test-bed cluster will not be too useful (except to establish

roof-of-concept) and that simulation is the best way to proceed.

oreover, the uniformity and structured design of server-centric

CNs ameliorates against performance discrepancies that might

rise in “more random” networks. 

Error bars . The absence of error bars in our evaluation is by de-

ign. In our paper, random sampling occurs in two different ways:

he first is where a random set of faulty links is chosen and proper-

ies of the faulty topology are plotted, as in Figs. 9–12 ; the second

s with regards to randomised traffic patterns, as in Figs. 13–16 .
or each set of randomised link failures we plot statistics, either

n connectivity or path length, for the all-to-all traffic pattern ( i.e.,

he whole population of server-node-pairs). 

In Figs. 9–12 we sample the mean of two statistics over the set

f all possible sets of m randomised link failures based on only

ne trial for each network and statistic, and therefore it does not

ake sense to compute estimated standard error for these plots.

he true error clearly remains very small, however, because of the

igh level of uniformity of the DCNs we are studying, including

he non-homogeneous DCN FiConn. The uniformity effectively sim-

lates a large number of trials, since, for each choice of faulty link

here are hundreds or thousands of other links in the DCN whose

ailure would have almost exactly the same effect on the overall

xperiment. Quantifying this error is outside the scope of our pa-

er; however, it is evident from the low amount of noise in our

lots that the true error is negligible in the context of the conclu-

ions we are making. Figs. 13–16 sample flows to find the mean

umber of links with a certain proportion of utilisation, and to

nd the mean hop-lengths of the flows. Our sample sizes, given in

ection 4.5 , are exceedingly large for this purpose, and thus error

ars would be all but invisible in these plots. We leave the explicit

alculation to the reader. 

. Evaluation 

In this section we perform an empirical evaluation of the DCN

Q 

� and compare its performance with that of the DCNs FiConn

nd DPillar using the methodology and framework as detailed in

ection 4 . We begin by comparing various different versions of the

hree DCNs as regards ABT (as defined in Eq. (1) ) and a coarse-

rained analysis of latency 4 . Next, we focus on 4 comparable large-

cale DCNs, namely GQ 

� 
3 , 10 

, G Q 

� 
4 , 6 

, FiConn 2, 24 , and DPillar 4,18 , and

e examine them in more detail with regard to fault-tolerance,

atency, and load balancing, under different traffic patterns. In-

erspersed is an examination of the fault-tolerance capabilities of

Q 

� -routing in comparison with what might happen in the optimal

cenario. 

.1. Aggregate bottleneck throughput 

We begin by comparing GQ 

� , FiConn, and DPillar as regards ag-

regate bottleneck throughput, following our framework as out-

ined in Section 4.3 ; in particular, we use the routing algorithms

Q 

� -routing, TOR , and DPillarSP . We work with 3 different parame-

erized versions of GQ 

� , 2 of FiConn, and 3 of DPillar. Not only do

e look at the relative ABT of different DCNs but we look at the

calability of each DCN in terms of ABT as the number of servers

r component cost grows. 
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Fig. 6. ABT using GQ � -routing, TOR , and DPillarSP . 

Fig. 7. ABT in terms of network cost for GQ � -routing, TOR , and DPillarSP , where a 

DCN DPillar is 110% the cost of a DCN GQ � with the same number of server nodes, 

whilst a DCN FiConn is 98% of the cost of a DCN GQ � . Network cost is normalised 

by the aggregated component cost per server in GQ � . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Routed mean hop-distances for GQ � -routing, TOR , and DPillarSP . 
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5 Routed and unrouted data computed for other DCNs GQ � was very similar and 

is not plotted for the sake of clarity. 
We first consider ABT vs. the number of servers in each net-

work. Fig. 6 shows that ABT scales much better in GQ 

� than in

FiConn. For the largest systems considered, GQ 

� supports up to

around three times the ABT of FiConn 3, n . The difference between

the 3 versions of GQ 

� and FiConn 2, n is not as large but is still sub-

stantial. We can see that although the DCNs GQ 

� are constructed

using far fewer switch-nodes and links than DPillar (when the two

DCNs have the same number of server-nodes), their maximum sus-

tainable ABT is broadly better; however, while the DCNs GQ 

� 
k,n 

with k = 2 and k = 3 consistently outperform all DPillar DCNs,

DPillar 3, n does slightly outperform GQ 

� 
4 ,n 

. 

Fig. 7 shows a plot of ABT vs. network cost under the most

plausible assumptions discussed in Section 4.1 , namely that the ag-

gregated cost of components for DPillar is around 10% more and

that of FiConn is around 2% less than that of GQ 

� . When we nor-

malize by network cost, we can see a similar shape to Fig. 6 except

that FiConn has a slightly improved scaling whereas DPillar has a

slightly degraded one. 

Let us focus on the increase in ABT for GQ 

� 
k,n 

as k decreases,

which can be explained as follows. First, for a fixed number of

server-nodes, reducing k results in an increased switch-node radix,

which translates into higher locality. Second, reducing k results in

lower routed mean hop-distance (see Fig. 8 ), which lowers the to-

tal utilization of the DCN and, when combined with good load bal-

ancing properties, yields a bottleneck link with fewer flows. As re-

gards routed mean hop-distances for each of the DCNs, we can see

that for each topology these increase very slowly with network

size (apart from, perhaps, FiConn 3, n ) and are, of course, bounded

by the routed hop-diameter, which is dependent on k for all 3

topologies: 2 k + 1 for GQ 

� -routing ; 2 k +1 − 1 for TOR ; and 2 k − 1 for
PillarSP . The “exponential nature” of FiConn discourages build-

ng this topology for any k larger than 2. However, note that in

erms of routed mean hop-distance, DPillar is slightly better than

Q 

� , broadly speaking. However, such a metric cannot be taken in

solation and we take a closer look at this metric in relation to

oad balancing in a more detailed evaluation of our three DCNs in

ection 5.4 (things are not what they might appear here). 

Although we forgo a simulation of packet injections, our exper-

ments do allow for a coarse-grained latency analysis. Network la-

ency is brought on by routing packets over long paths and spend-

ng additional time processing ( e.g. , buffering) the packets at inter-

ediate nodes, due to network congestion. These scenarios have

arious causes, but they are generally affected by a DCN’s abil-

ty to simultaneously balance network traffic and route it over

hort paths efficiently. Figs. 6–8 show that GQ 

� -routing scales well

ith respect to load balancing (high ABT) and routed mean hop-

istance, from which we infer that in many situations GQ 

� 
3 ,n has

ower latency than GQ 

� 
4 ,n 

and all FiConn DCNs, and likely performs

t least similarly to DPillar 3, n . 

In summary, GQ 

� has better ABT properties than FiConn and

lso broadly outperforms the denser DPillar; as discussed in

ection 4.3 , ABT is a performance metric of primary interest in the

ontext of datacenters. We can also infer from our experiments a

oarse-grained latency analysis, namely that GQ 

� -routing is likely

o be at least as good as DPillar and better than FiConn. 

.2. Fault-tolerance 

We now turn our attention to four concrete instances of the

opologies and their routing algorithms: GQ 

� 
3 , 10 

and GQ 

� 
4 , 6 

with

Q 

� -routing ; FiConn 2,24 with BFS; and DPillar 4,18 with DPillarMP

though we shall also consider DPillar with DPillarSP in the non-

ault-tolerant environment of Section 5.4 ). As stated in Section 4.4 ,

hese DCNs were chosen as each has around 25,0 0 0 server-nodes

nd use switch-nodes with around 24 ports. 

A priori , GQ 

� has a provably high number of parallel paths and

erver-parallel paths compared to FiConn and DPillar of similar size

see Table 2 ). Thus, if GQ 

� -routing utilises these paths, we expect

trong performance in degraded networks. Fig. 9 shows the routed

onnectivity under failures 5 of GQ 

� -routing and DPillarMP . The plot

ndicates that DPillarMP underutilises the network, since the un-

outed connectivity of DPillar (not plotted) is slightly stronger than

hat of GQ 

� . This highlights the fact that there is a close and com-

lex relationship between topology, path-lengths, routing, fault-

olerance, and so on; ensuring that all aspects dovetail together is

f primary importance. These observations also motivate a more

etailed evaluation of GQ 

� -routing (and indeed fault-tolerant rout-
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Fig. 9. Routed connectivity of GQ � -routing and DPillarMP . 

Fig. 10. Unrouted connectivity of GQ � and FiConn. 
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Fig. 11. Routed ( GQ � -routing ) and unrouted mean-distance in GQ � with 10% link 

failures. 

Fig. 12. Routed ( GQ � -routing ) and unrouted connectivity of GQ � with 10% link fail- 

ures. 
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6 GQ � -routing appears to be better than BFS for certain numbers of servers, but 

this is because the faults were generated randomly for each test. 
ng for DPillar). Note that the evaluation of DPillarMP in Liao et al.

31] is with respect to server-node faults, in which the perfor-

ance of DPillarMP looks stronger than it does in our experiments

ith link-failures. This is because the failed server-nodes do not

end messages and therefore do not factor into the connectivity of

he faulty DPillar. 

.3. Assessment of GQ 

� -routing 

With FiConn not having a fault-tolerant algorithm comparable

o GQ 

� -routing (see Section 4.6 ), in Fig. 10 we plot the unrouted

onnectivity of GQ 

� with that of FiConn. As we can see, GQ 

� -routing

erforms similarly to FiConn in an optimal scenario. To our knowl-

dge there is no fault-tolerant routing algorithm for FiConn that

chieves anything close to the optimal performance of BFS (how-

ver, Fig. 12 shows that GQ 

� -routing very nearly achieves the opti-

um unrouted connectivity of GQ 

� ). 

In summary, we have shown that GQ 

� and GQ 

� -routing are very

ompetitive when compared with both FiConn and DPillar in terms

f fault-tolerance. 

We assess the performance of GQ 

� -routing by comparing it with

ptimum performance, obtained by computing a BFS which finds a

hortest-path (if it exists). Notice that since dimensional routing

ields a shortest-path algorithm on GQ k , n , it is straightforward to

odify GQ 

� -routing so as to be a shortest path algorithm on GQ 

� 
k,n 

;

owever, due to simplifications in our implementation there is a

iscrepancy of about 2% between shortest paths and GQ 

� -routing

n a fault-free GQ 

� . 

Of interest to us here is the relative performance of GQ 

� -routing

nd BFS in faulty networks. Fig. 11 plots the routed and unrouted

ean hop-distances in networks with a 10% link failure rate; as

an be seen, the difference between GQ 

� -routing and BFS in mean

op-distance is close to 10%. This is a reasonable overhead for a

ault-tolerant routing algorithm, especially given the algorithm’s

igh success rate at connecting pairs of servers in faulty networks:

ig. 12 plots the unrouted connectivity, which is optimum and
chieved by a BFS, and the routed connectivity, achieved by GQ 

� -

outing , for the same (10%) failure rate 6 . As it is currently imple-

ented, GQ 

� -routing is optimised for maintaining connectivity at

he cost of routing over longer paths if necessary. A different mix

f features might reduce the 10% gap in Fig. 11 but increase the

ap in Fig. 12 . In any case, the performance of GQ 

� -routing is very

lose to the optimum. 

.4. Detailed evaluation of large-scale DCNs 

We now return to our four concrete instances of the topologies

nd their basic routing algorithms: GQ 

� 
3 , 10 

and GQ 

� 
4 , 6 

with GQ 

� -

outing ; FiConn 2,24 with TOR ; and DPillar 4,18 with DPillarSP . Our in-

ention is to look at throughput, how loads are balanced, and the

mpact on latency. 

Fig. 13 shows the number of flows in the bottleneck for the

ifferent traffic patterns considered in our study. We can see that

hese results follow those described above in that not only can GQ 

� 

roadly outperform FiConn and DPillar in terms of ABT, cost, la-

ency, and fault-tolerance, but it does likewise in terms of through-

ut in that it can significantly reduce the number of flows in the

ottleneck. The only exceptions are that DPillar 4, 18 does best with

he butterfly and hot-region traffic patterns: the rationale for the

utterfly results is that the butterfly pattern matches perfectly the

Pillar topology and, thus, it allows a very good balancing of the

etwork, reducing the flows in the bottleneck; and although DPil-

ar does best, the hot-region results for GQ 

� and DPillar are not

ery different. For the rest of the patterns, DPillar is clearly the

orst performing in terms of bottleneck flow. Fig. 14 shows the

outed mean hop-distance for the different patterns and topolo-

ies, and shows that DPillar, due to the higher number of switches,
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Fig. 13. Relative number of flows in the bottleneck for the different traffic patterns, 

normalised to FiConn and TOR . 

Fig. 14. Routed hop-distance for the different traffic patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Histogram of proportion of flows per link under the all-to-all traffic pattern. 

The mean number of flows per link are 89,567, 101,953, 84,615, and 141,187, for 

GQ � 3 , 10 , GQ � 4 , 6 , FiConn 2,24 and DPillar 4,18 , respectively. Connecting lines are drawn for 

clarity. 

Fig. 16. Distribution of number of flows per link for the random traffic pattern. Not 

plotted are 52,488 unused links in DPillar and 6,162 unused links in FiConn. 
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can generally reach its destination using the shortest paths. Note

that even with the clear advantage of having higher availability

of shorter paths, DPillar 4, 18 still has the highest number of flows

in the bottleneck for the all-to-all, many all-to-all, random, and

hot-spot traffic patterns, and, therefore, is the most prone to con-

gestion. On the other hand GQ 

� 
4 , 6 , which uses the longest paths,

has the second lowest number of flows in the bottleneck after

GQ 

� 
3 , 10 

. It should be noted that for the hot-region traffic pattern,

the combination of a low number of bottleneck flows and short

paths means that DPillar has the best performance. 

The results we have obtained as regards bottleneck flows and

routed hop-distances might appear surprising. However, a closer

analysis helps to better appreciate the situation. Fig. 15 shows the

distribution of flows across links in the all-to-all traffic pattern: for

a given number of flows, we show the proportion of links carry-

ing that number of flows. We can see that both GQ 

� s are much

better balanced than both FiConn 2,24 and DPillar 4, 18 . For example,

in GQ 

� 
3 , 10 

all of the links carry between 60,0 0 0 and 10 0,0 0 0 flows,

and in GQ 

� 
4 , 6 all of the links carry between 80,0 0 0 and 120,0 0 0

flows. However, nearly 25% of the links in FiConn 2,24 have less than

40,0 0 0 flows, whereas the other 75% of the links have between

80,0 0 0 and 140,0 0 0 flows. Even worse, in DPillar 4, 18 half of the

links have more than 10 0,0 0 0 flows while the other half are barely

used. The imbalances present in FiConn 2, 24 and DPillar 4,18 result in

parts of the networks being significantly underutilised and other

parts being overly congested. 

A more detailed distribution obtained using the random traffic

pattern is shown in Fig. 16 . Here, we can see how both GQ 

� s are

clearly better balanced than FiConn 2, 24 , as the latter has two pin-

nacles: one of low-load with about 30% of the links, and another of

high-load with the rest of the links. We can also see that choosing

the bottleneck link as the figure of merit is reasonable as it would

yield similar results as if we had chosen the peaks in the plot. 
Just as we did in Section 5.1 , we can infer that GQ 

� 
3 , 10 

will

rovide better latency figures than GQ 

� 
4 , 6 

and FiConn 2,24 as it has

ewer flows in the bottleneck link and uses shorter paths. The

horter paths in DPillar 4,18 do suggest that with low-intensity com-

unication workloads it should have lower latency than GQ 

� 
3 , 10 

,

ut since DPillar 4,18 is much poorer at balancing loads than GQ 

� 
3 , 10 ,

e can infer that it may have higher latency under higher-intensity

ommunication workloads such as the ones typically used in data-

enters. 

. Practical aspects of DCNs 

Before we present our conclusions, let us take this opportunity

o comment on the current place of the server-centric paradigm

ithin the DCN landscape. There is still much to do as regards

erver-centric DCNs. As yet, insofar as we know, a substantial

erver-centric DCN has yet to be physically built. Given the costs of

uilding a DCN, this will only happen when industry is convinced

f the practical benefits that will accrue; and this will only happen

hen academic researchers have explored, proposed, and exten-

ively evaluated many potential server-centric DCN topologies so

s to provide a convincing argument. At present, we are nowhere

ear this point. If one reflects on the situation for general inter-

onnection networks, one sees a plethora of different topologies

ogether with a significant associated research effort (spanning en-

ineering, mathematics, and computer science), with a substantial

ime lag before designs make it through to production. 

There are many downstream challenges in order to move re-

earch on the server-centric paradigm forward from its current po-

ition, whereby conceptual and theoretical design ideas are sub-

ected to an initial analysis as to their essential efficacy (indeed,
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his constitutes the content of this paper). The more established

witch-centric paradigm has made it through to production and

s far more mature, with practical evaluations being undertaken

pon real production datacenters. Consequently, there are a num-

er of more pragmatic issues relating to switch-centric DCNs that

ave yet to be fully understood within the server-centric context,

ne of which is over-subscription (as we mentioned earlier). The

ey point as regards over-subscription is that the ‘tree-like’, hierar-

hical, layered nature of switch-centric DCNs, with the servers as

leaves’, makes over-subscription relatively straightforward to anal-

se: the focus is on the switches, and the combinatorial proper-

ies of the topologies ( e.g. , fat-trees) makes the calculation of over-

ubscription ratios possible. The situation in server-centric DCNs is

y no means as sharply defined: the switch is no longer the focus

or loads, and the underlying topologies are far more complex. Fur-

hermore, the combinatorial properties of these topologies (regard-

ng bisection width, for example) are as yet generally not well un-

erstood. Added to this is the additional complication that in order

o truly evaluate over-subscription, one needs the technical specifi-

ations of the intrinsic components, such as the actual bandwidths

f links and servers. This data is readily available for switch-centric

CNs but not for server-centric DCNs (for obvious reasons). 

It should also be noted that there are other approaches taken

s regards (future) DCN design. An interesting account as regards

he direction followed by Google can be found in [41] , where it

s noted (albeit briefly) that the server-centric paradigm has both

ros and cons in comparison with their Clos topology-based ap-

roach: the pros are in relation to bandwidth; and the cons as

egards the challenges and complexity posed by cabling, manage-

ent, and routing. Let us briefly mention these latter issues in re-

ation to the research in this paper. The cons of the server-centric

aradigm are not so much definitive but are challenges remain-

ng to be undertaken. Cabling is certainly an overlooked concern

nd there has only been limited mention of cabling in the con-

ext of server-centric DCNs; in fact, the only paper we are aware

f is [2] and even then server-centric DCNs only feature obliquely.

t is clear that cabling needs to be tackled within the context of

erver-centric DCNs. In this regard, the uniformity of our generic

ethodology provides an advantage as it enables us to poten-

ially use cabling aspects related to the base graphs to assist us

ith cabling within the resulting stellar DCN. Issues relating to

etwork management have, understandably, not been extensively

tudied due to the current ‘theoretical’ status of server-centric

CNs. As regards routing, as we have shown, our approach en-

bles us to utilize established routing algorithms for the underly-

ng base graphs in routing algorithms within our stellar DCNs, and

e have demonstrated that such routing algorithms for GQ 

� com-

are favourably with those in DPillar and FiConn. Consequently, al-

hough much further research needs to be undertaken within the

erver-centric landscape, our stellar transformation has significant

otential. What Singh et al. [41] alerts us to is that there needs to

e a wider evaluation of server-centric DCNs across a range of met-

ics and that, ultimately, the server-centric paradigm will only suc-

eed if such DCNs make it through to production and can compete

n practical terms (at least as regards some performance aspects). 

. Conclusion 

This paper proposes a new, generic construction that can be

sed to automatically convert existing interconnection networks,

nd their properties in relation to routing, path length, node-

isjoint paths, and so on, into dual-port server-centric DCNs, that

nherit the properties of the interconnection network. A range of

nterconnection networks has been identified to which our con-

truction might be applied. A particular instantiation of our con-

truction, the DCN GQ 

� where the base interconnection network is
he generalized hypercube, has been empirically validated as re-

ards network throughput, latency, load balancing capability, fault-

olerance, and cost to build. In particular, we have shown how GQ 

� ,

ith its routing algorithm GQ 

� -routing , that is inherited from an

xisting routing algorithm for the generalized hypercube, consis-

ently outperforms the established DCNs FiConn, with its routing

lgorithm TOR , and DPillar, with its routing algorithms DPillarSP

nd DPillarMP . As regards FiConn, the improved performance of

Q 

� was across all of the metrics we studied, apart from aggre-

ated component cost where the two DCNs were approximately

qual. As regards DPillar, the improved performance was across all

etrics, apart from mean routed hop-distance and as regards bot-

leneck flows in the butterfly and hot-region traffic pattern. How-

ver, in mitigation against DPillar’s improved mean routed hop-

istance, our experiments as regards load balancing enable us to

nfer that although DPillar will exhibit lower latency in the case of

ow traffic congestion, when there is average to high traffic conges-

ion DPillar’s propensity to unbalanced loads on its links will mean

hat GQ 

� will have the better latency. Particularly marked improve-

ents of GQ 

� against DPillar are as regards the fault-tolerant per-

ormance of the respective routing algorithms in link-degraded

CNs and also the aggregated component cost which in DPillar

s around 10% higher than in GQ 

� . When we compare the perfor-

ance of GQ 

� -routing within GQ 

� against what is optimally possi-

le, in terms of path length, we find that GQ 

� -routing finds paths

hat are within 2% of the optimal length (0% is realistically possi-

le) and within around 10% for degraded networks with 10% faulty

inks. This is a relatively small overhead for our routing algorithm

hich achieves very high connectivity, typically 95% connectivity

hen 10% of links are chosen to be faulty (uniformly at random). 

There are a number of open questions immediately arising

rom this paper that we will investigate in the future. A non-

omprehensive list is as follows. 

• Analyse the practicalities (floor planning, wiring, availability of

local routing, and so on) of packaging the DCNs GQ 

� and inves-

tigate a generic packaging methodology for DCNs formed using

the stellar transformation (as we noted earlier, packaging issues

relating to server-centric DCNs in general have hardly been con-

sidered). 

• Apply the stellar transformation to other well-understood in-

terconnection networks (some of which we have already high-

lighted) and undertake a more extensive empirical analysis.

This empirical analysis should involve a wider range of DCN ar-

chitectures and traffic models, and additional performance met-

rics, relating to, for example, multicast routing and energy effi-

ciency. 

• Explore the effect of the stellar construction on formal notions

of symmetry in the base graph and in relation to metrics such

as bisection width. We have actually made some initial progress

on how the bisection widths of the base graph and the stellar

DCNs are related, which will be reported elsewhere. 

• Further investigate the routing algorithm GQ 

� -routing . For ex-

ample, we should develop it so as to produce minimal paths

for fault-free networks and compare the resulting performance

with the near-optimal algorithm used in this paper. 

Finally, let us remark upon two observations made by the

nonymous reviewers that might lead to new research investi-

ations, and not just in the context of stellar transformations.

he first observation is that one could use, for example, 64-port

witch-nodes in order to implement 4 16-port switch-nodes. Inso-

ar as we are aware, this approach has not previously been sys-

ematically considered. It has a number of interesting mathemat-

cal ramifications; for example, as regards our stellar transforma-

ions, proceeding in this way would mean that the resulting stellar

CN inherited properties not from the base graph but from the
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base graph where groups of nodes had been identified. A judicious

choice of which nodes to identify could have a marked impact

upon properties such as the diameter and connectivity. The second

observation is that there has been no significant consideration of

how one might use the hardware from an existing switch-centric

DCN in order to build a server-centric DCN. One idea might be

to have multiple, smaller server-centric DCNs connected by means

of an aggregation/core infrastructure to form some flavour of hy-

brid between server- and switch-centric DCNs. For example, we

might replace the lowest layer of a tree-like switch-centric DCN

with small server-centric DCNs; thus, some ports from the switch-

nodes of server-centric DCNs will be connected to the aggregation

layer of the infrastructure. This might help alleviate cabling and

large hop-count issues relating to server-centric DCNs. 
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