
COLOR IMAGE EDGE DETECTION BASED ON QUANTITY OF COLOR
INFORMATION AND ITS IMPLEMENTATION ON THE GPU ∗

Jingxiu Zhao
School of Computer Science

Qufu Normal University
Rizhao 276826, China

email: jingxiuzhao@126.com

Yonghong Xiang, Laurence Dawson and Iain St wart
School of Engineering and Computing Sciences

Durham University
Durham, United Kingdom, DH1 3LE

email: {yonghong.xiang, l.j.dawson, i.a.stewart}@dur.ac.uk

ABSTRACT
In this paper, we present a new method for quantifying
color information so as to detect edges in color images. Our
method uses the volume of a pixel in the HSI color space,
allied with noise reduction, thresholding and edge thinning.
We implement our algorithm using NVIDIA Compute Uni-
fied Device Architecture (CUDA) for direct execution on
Graphics Processing Units (GPUs). Our experimental re-
sults show that: compared to traditional edge detection
methods, our method can improve the accuracy of edge de-
tection and withstand greater levels of noise in images; and
our GPU implementation achieves speedups over related
CUDA implementations.

KEY WORDS
color image edge detection; HSI color space; GPU

1 Introduction

Edge detection is one of the most fundamental operations
in computer vision, image processing and pattern recog-
nition systems. As other tasks (such as contour detection
[1], image segmentation, object recognition and classifica-
tion, image registration, and so on) can depend upon edge
characterization, it is crucial that the process of edge detec-
tion should result in a precise characterization of the image
features but via a reduced image of relatively small size.
Hence, edge detection must be both reliable and efficient
[2].

Edge detection differs according to whether an image
is color or not. Novak and Shafer [3] found that about 90%
of edges in color images are also edges in terms of their
gray values. However, the remaining 10% of edges in color
images can not be so characterized. Thus, many color edge
detection algorithms have been proposed (see [4, 5, 6] for
examples).

We propose a new color edge detection algorithm
based on the quantity of color information (QCI) in the HSI
color space. To detect as many edges as possible, we incor-

∗CORRESPONDING AUTHOR: YONGHONG XIANG. THIS
WORK IS SUPPORTED BY THE UK EPSRC GRANT (NO.
EP/G010587/1) AND THE NATURAL SCIENCE FOUNDATION OF
SHANDONG PROVINCE UNDER GRANT NO. ZR2009GM009 AND
NO. ZR2010FQ004.

porate the QCI into an existing method which concentrates
on the luminance as the color information. By doing this,
we can detect edges that can not be detected by using the
luminance alone. As the Canny edge detection algorithm
is considered as standard and fundamental [7, 8, 9], we
mainly compare our algorithm with the Canny algorithm.
Experimental results show that our algorithm performs bet-
ter than the Canny and Prewitt edge detection algorithms in
that it can sustain significantly more noise and sometimes
detect more edges. Moreover, our algorithm runs much
faster than the Canny algorithm. By using NVIDIA Com-
pute Unified Device Architecture (CUDA) [10] and opti-
mizing memory usage, we implement our algorithm on a
Graphics Processing Unit (GPU) and we obtain an imple-
mentation that is around 20 times faster than the CPU Intel
Performance Primitives (IPP) Canny algorithm and around
5 times faster than the existing CUDA Canny algorithm
[11]. Throughout the paper, we direct the readers to the
webpage [10] for Nvidia CUDA related content.

This paper is organized as follows. In the next sec-
tion we give a general introduction to edge detection tech-
niques, GPU and CUDA, and some related work before de-
scribing the main steps of our algorithm in Section 3. We
describe our parallel implementation in Section 4, and in
Section 5 we detail our results and provide an analysis. The
final section concludes the paper.

2 Edge Detection and GPU Applications

2.1 Introduction to Edge Detection

An edge in a monochrome image is defined as an inten-
sity discontinuity, while in a color image, the additional
variation in color must be considered; for example, the cor-
relation among the color channels. There are a number of
color edge detection methods. They can be divided into two
groups: 1. techniques extended from monochrome edge
detection; 2. vector space approaches, including vector
gradient operators, directional operators, compound edge
detectors, entropy operators, second derivative operators,
vector order statistic operators and difference vector op-
erators [12, 13]. Numerous kernels have been proposed
for finding edges; for example, the Roberts kernels, Kirsch
compass kernels, Prewitt kernels and Sobel kernels. By us-

Proceedings of the IASTED International Conference

December 14 - 16, 2011 Dallas, USA
Parallel and Distributed Computing and Systems (PDCS 2011)

DOI: 10.2316/P.2011.757-077

e

116

ing gradient operators the edges are detected by looking for
the maximum in the first derivative of the color or intensity
of the images. Second derivative operators search for zero-
crossings in the second derivative of the color or intensity
of the image to find edges [14]. First derivative operators
are very sensitive to noise, while the second derivative op-
erators lead to better performance in a noisy environment.

After selecting a suitable color space [15], primary
edge detection steps include: (1) suppressing noise by im-
age smoothing; and (2) localizing edges by determining
which local maxima correspond to edges and which to
noise (thresholding). A Gaussian filter is widely used to
remove noise. The Gaussian operator is isotropic and there-
fore smoothes the image in all directions [16]. One prob-
lem with derivative-based edge detection is that the output
may be thick, and a further edge thinning [17] step is nec-
essary.

2.2 GPU and CUDA

NVIDIA CUDA [10] is a general purpose parallel program-
ming model for developing applications specifically for ex-
ecution on NVIDIA GPUs. CUDA provides several mem-
ory types and allows developers to write code in C/C++
completely bypassing traditional graphics interfaces such
as the shader language Cg. This model of programming al-
lows developers to exploit data parallelism in a wide range
of domains whilst abstracting the underlying architecture
for ease of use and portability.

The typical architecture of a CUDA GPU consists of
a scalable array of streaming multiprocessors (SM), each
containing a subset of Streaming Processors (SP). Methods
to be executed in parallel on the GPU are known as kernels.
When a kernel method is called, the execution is distributed
over a set of blocks each with their own subset of parallel
threads.

CUDA applications are able to support fine-grained
parallelism. In contrast CPU applications often apply
coarse-grained parallelism. However, through Streaming
SIMD Extensions (SSE), modern Intel CPUs can support
an SIMD instruction set to potentially improve perfor-
mance in data-parallel regions such as image processing,
digest, hashing and encoding. The two levels of granularity
are directly interoperable which can lead to a wider variety
of parallel solutions.

A physical restriction of the GPU is the amount of
memory available on-chip. As a result the programming
model presents a set of different memory types to the de-
veloper. Each thread within a block has access to a set of
fast local registers and on-chip shared memory. Registers
are the fastest form of storage; however, the total number
per block is limited and exceeding this can result in a lower
occupancy of the GPU. For inter-block communication the
slower shared memory can be used. This shared memory is
unique to each block and inaccessible to all others. Mov-
ing off-chip, threads have access to texture memory, con-
stant memory and global memory (DRAM). Constant and

texture memory generally have the fastest access times due
to on-chip caching. However with the increased cache size
presented by Fermi (a recent GPU computing architecture)
[10] this is not always the case. As noted by NVIDIA in the
Fermi tuning guide, when using older cards, texture mem-
ory can potentially reduce the load time when loads are not
coalesced. However, newer Fermi cards cache global mem-
ory loads in the high bandwidth L1 cache which has a faster
access time than texture cache. With this in mind we chose
to use global and shared memory to take advantage of the
higher bandwidth cache.

2.3 Related Work

Luo and Duraiswami implemented a parallel version of the
Canny edge detection algorithm using CUDA [11]. Their
work is similar to a previous parallel implementation; how-
ever, it uses CUDA as opposed to NVIDIA Cg and extends
the functionality to include hysteresis thresholding. Sec-
tions of the implementation such as Gaussian blurring were
built upon NVIDIA SDK examples which provide a good
level of code reusability. The results of [11] show a modest
speedup compared to highly optimised Intel SSE code and
significant speedups compared to naive Matlab code. How-
ever it is worth noting that their code was tested using first
generation CUDA hardware. Luo and Duraiswami note
that hysteresis thresholding occupies over 75% of the over-
all runtime. This is due to the function to connect edges be-
tween thread blocks being called multiple times and with-
out this stage the algorithm performs around 4 times faster.
They note that the runtime can vary depending on the com-
plexity of the image and number of edges.

Building upon the work of Luo and Duraiswami,
Ogawa et al. extend the implementation of the Canny edge
detection algorithm [18]. They note that as the hysteresis
step is called a fixed number of times, some edges which
span over blocks may not be fully traversed. Their imple-
mentation solves this by introducing a stack onto which
weak edges are pushed and when all edges have been tra-
versed, the algorithm will terminate. Their results show
a speedup of around 50 times for large images; however
it is unclear as to whether they first compare with niave
CPU code or SSE optimised code. It would be reasonable
to assume that the runtime of their improved method will
also vary largely depending on the input image. The imple-
mentations of Luo and Duraiswami and Ogawa et al. only
support gray input and to the best of our knowledge there
have been no color edge detection algorithms implemented
using CUDA.

NPP (NVIDIA Performance Primitives) is a closed-
source CUDA library targeted specifically at video and im-
age processing (although the scope is set to increase with
time). NPP allows developers to easily port existing sec-
tions of Intel Performance Primitives (IPP) C/C++ code to
corresponding GPU functions. We will not be using the
NPP library, as it is not an open source library and modifi-
cations cannot be made.

117

3 Main Steps of Our Algorithm

Our algorithm is divided into 4 steps.
Step 1. Noise removal and color space transforma-

tion. The following Gaussian filter is used to remove noise.

G(x, y) = 1
2πσ2 e

− x2+y2

2σ2

where x is the distance from the origin in the horizontal
axis, y is the distance from the origin in the vertical axis,
and σ is the standard deviation of the Gaussian distribution.

We choose to use the HSI (Hue-Saturation-Intensity)
color space as it represents colors similarly to how the hu-
man eye senses colors, and it is one of the most commonly
used color spaces in image processing. The HSI color
space can be plotted as a cylinder (see Fig. 1) [19]. As
shown in Fig. 1, for a given color P in the HSI color space,
H (hue) is given by an angular value ranging from 0 to
360 degrees, S (saturation) is given by a radial distance
from the cylinder center line, and I (intensity) is the height
along the cylinder axis. The following three formulas con-
vert a color in RGB (R,G,B) to a color (H,S, I) in the
HSI color space:

I =
R+G+B

3

S = 1− min(R,G,B)

I

H =

{
θ if G ≥ B

2π − θ otherwise

where θ = arccos

[
1
2 [(R−G)+(R−B)]√

(R−G)2+(R−B)(G−B)

]
.

Figure 1. HSI color space.

Step 2. Gradient finding. This is an important step
for our algorithm, and we thus obtain better edge maps than
some of the existing algorithms.

Let P = Img(i, j) be a pixel at position (i, j) in im-
age Img, and its color information be (HP , SP , IP). De-
fine its volume VP = π ∗ S2

P ∗ IP ∗ (HP /360). As well
as volume information, color intensity information is also
considered in our algorithm. Replace each pixel’s color in-
formation in Img by the corresponding volume (resp. in-
tensity) information, and denote it as ImgV (resp. ImgI).

We use Prewitt kernels to calculate the magnitude of the
volume information and the intensity information.

Let ImgP be the 3 × 3 area centered at pixel P in
ImgV (resp. ImgI), and let Gx = Dx × ImgP and
Gy = Dy × ImgP be the magnitude in the x direction
and the y direction for P in ImgV (resp. in ImgI), where
Dx is the x directional Prewitt kernel, and Dy is the y di-
rectional one. The magnitude of the volume information
(resp. intensity information) for the pixel P is defined as:
M1P =

√
G2
x +G2

y .

Another two direction operators are applied in our al-
gorithm to obtain more accurate edges: one in the 45◦ di-
rection; and one in the 135◦ direction. Similarly, the mag-
nitude of the volume (resp. intensity) information is de-
fined as: M2P =

√
G2

45◦ +G2
135◦ . A pixel is considered

as on an edge if eitherM1P orM2P is above a correspond-
ing threshold.

Step 3. Thresholding. The threshold value is set as
the average volume magnitude value multiplied by a con-
stant. For the constant, we first set a random value, and
then adjust it until we get a satisfiable edge map. Different
images will have different constant value.

Step 4. Edge thinning. One problem with a
derivative-based edge detection algorithm is that the out-
put edges may be thicker (several pixels in width) than a
connected unit-width line around the boundary of an ob-
ject. It is necessary to thin the edges. In this paper, we use
one of the algorithms as implemented in [20], which is a
modified version of the algorithm in [21].

4 CUDA Implementation

This section aims to describe how the four steps of our al-
gorithm (described in Section 3) are mapped to the GPU
using CUDA and C++ bindings. For the input image we
chose to use the file format BMP due to the ease of loading
and saving images without the need for third party libraries.
Image data is stored in the CUDA vector type uchar4 which
allows us to access the individual RGB components of a
pixel without the need for bit shifting techniques which
are commonly used in OpenGL to pack data into a sin-
gle integer value. This method requires the same memory
size allocation; however, it reduces the program complex-
ity. At each stage of the algorithm global memory accessed
has been coalesced for maximum bandwidth. To meet the
block and thread size restrictions of CUDA we chose to
use square images. However, if needed the solution could
be modified to pad images. Finally our solution is designed
to utilise the advancements made by Compute 2.0 devices
such as an increased shared memory size and processing
of threads by full warp; as a result it is incompatible with
older GPUs.

Step 1. Gaussian Blurring and Color Space Transfor-
mation. The first step of our algorithm applies a Gaussian
blur to the input image whilst preserving the three color
channels. We initially set the standard deviation σ = 1

118

for the Gaussian filter, and the user can change it at run
time. As this step is a fairly common operation in im-
age processing NVIDIA have provided optimised CUDA
code as part of the source development kit (SDK). The ex-
ample provided is designed to reduce idle threads, allows
multiple pixel processing per thread and is optimised for
memory coalescence. NVIDIA describe how the Gaus-
sian blur technique can be expressed as the product of two
one-dimensional filters. This allows developers to replace a
single image convolution kernel with two kernels targeting
separate planes for reduced complexity. As threads at the
edges of the block will require additional information from
neighbouring blocks, a block apron is used which overlaps
pixel values. As we convolve the image with a small fil-
ter radius we chose to implement two separable filters as
opposed to using the fast Fourier transform library. This
approach was also used by Luo and Duraiswami for the
first stage of their parallel Canny edge detection algorithm
[11].

The separable convolution example provided only
supports blurring of gray images and is optimised for a sin-
gle channel. For a color image the three channels can be
blurred independently and recombined after the last blur.
This basic approach would allow us to use the source pro-
vided without modification. However by combining the
three iterations into one single pass we can take advantage
of the results existing in shared memory.

At the end of the second convolution we calculate the
color space transformation. By combining the two stages
of the algorithm we are able to remove unnecessary access
to slow global memory. After the color space transforma-
tion is complete the results are written back to global mem-
ory. This ensures that all blocks are synchronised for the
next stage of the algorithm. Another optimisation made to
the first two stages of the algorithm was implementing a
set of pre-processor macros to replace repeating indepen-
dent sections of calculation. This allowed us to carefully
control and reduce the total number of registers used by
each thread block and retain a higher occupancy. The fi-
nal optimisation tested was to replace the inverse cosine
function with a faster approximation method. However this
performed worse than the compiler optimised fast-math al-
ternative and was not included.

Step 2. Gradient Calculation. For the next step of
the algorithm we calculate the gradient through convolu-
tion with the Prewitt operator. As we apply the operator in 4
directions, two of which are diagonal, the process is not lin-
early separable and requires a different approach to achieve
efficient convolution. Stam [22] describes how peak convo-
lution performance can be attained by using shared mem-
ory efficiently and gives insight into how his method could
be modified to support color images across three channels
(this approach was also used by the Gaussian blur kernels).
Stam’s solution also maps multiple pixels per thread to
achieve higher occupancy and reduce the total number of
apron pixels loaded. However, as his example uses gray
images, the shared and global memory access patterns are

Figure 2. Part 1, load the top apron pixels

Figure 3. Part 2, load the centre and the side apron pixels

Figure 4. Part 3, load the bottom apron pixels

carefully aligned for smaller data types. Based on a mod-
ified version of the proposed solution we perform a fast
efficient 2D convolution of the kernel that handles larger
float datatypes and multiple color channels. Figs 2, 3 and
4 show the shared memory loading scheme. Shared mem-
ory is aligned across 32 memory banks satisfying the ac-
cess pattern requirements to avoid bank conflicts. In tests
we found our approach was around 2-3 times faster than
naive global lookups and on older compute 1.0 hardware
the penalty was much greater due to the lack of L1 global
memory caching. Once the convolution is complete the val-
ues are again saved back to global memory in order to syn-
chronise the algorithm.

Step 3. Average Gradient Calculation and Thresh-
olding. In order to perform global edge thresholding the
average gradient values must first be calculated. Using the
results obtained from the previous convolution we imple-
ment a parallel reduction algorithm based upon the SDK
example provided by NVIDIA. The algorithm is split into
two stages (as CUDA does not support global synchronisa-
tion): first calculate the sum within each block; then calcu-
late the global total of the blocks. Before saving the total
average value to global memory the value is multiplied by a
constant to obtain the thresholding value (the constant has
been obtained by experiment).

With the global threshold values calculated, the next
stage is the relatively simple task of applying this to each
pixel. As each pixel is independent there is no need for
any apron area surrounding the blocks and we assign each
thread exactly one pixel. The first thread of each block
then caches the previously computed threshold value into
shared memory using a single 128-bit load. Each thread
then loads the corresponding pixel data into local registers
and performs a conflict-free broadcast access to the cached
threshold. Each thread then decides if the pixel qualifies as
an edge and writes this data back to global memory. At this
point there is an option to either display the edges as they
are or continue to process the data and thin the detected

119

256 32 4
128 16 2
64 8 1

Figure 5. LUT index matrix

edges.
Step 4. Edge Thinning. Using the edge thinning al-

gorithm mentioned in Section 3, we are able to thin an edge
based upon 3 conditions. Fortunately we can avoid the
costly task of calculating if each pixel satisfies all of the
conditions by pre-calculating the outcome of any possible
situation and storing this data in a lookup table (LUT) in
fast constant memory. As there are only 9 pixels in each
window of interest, each of which can be 0 or 1, there are
only 512 different outcomes to the edge thinning algorithm
per pixel. The outcome of any pixel’s calculation can be
accessed in the LUT by calculating the index shown ac-
cording to the matrix shown in Fig. 5. This is a commonly
used optimisation in image processing and is possible in
this circumstance due to the small kernel radius. A further
optimisation noted by Matlab was to bypass the LUT for
any pixel with no value as this will always return 0 [23].
On the GPU side we employ the same 2D shared memory
loading scheme as was used in step 2. After the results from
thresholding are loaded into shared memory, each thread
calculates the index for the LUT for each pixel. The fi-
nal step copies the value obtained from the LUT back into
global memory resulting in a thinner edge. This process is
repeated up to four times depending on desired output.

5 Results

In this section, we describe the results of our algorithm,
timings from GPU experiments and compare our algo-
rithm with other algorithms. For each algorithm the results
shown are based on the criteria of selecting the best output
by tuning the corresponding parameters. To evaluate our
proposed technique, we compare our algorithm with the
Canny and Prewitt edge detection algorithms for a set of
color images of the standard image processing dimension
512× 512.

5.1 Noise Tolerance

To demonstrate our algorithms tolerance to noise we
present the results of experiments using the image
Lemon.bmp. In Fig. 6, the images in column one are:
original lemon, +20% white noise lemon, and +40% white
noise. Columns two to four contain the results of our al-
gorithm, Canny and Prewitt, respectively. With no noise
present we can see that our algorithm detects more use-
ful edges than Prewitt and produces an edge map similar
to Canny. When noise is introduced to the image, our al-
gorithm maintains a near constant edge map whilst Canny

Figure 6. Compare edge maps for image lemon.

and Prewitt begin to falter. When noise is added, Canny and
Prewitt required significant input parameter changes whilst
our algorithm required minimal input changes. We can ob-
serve that the hysteresis stage of the Canny edge detection
algorithm begins to form incomplete edges due to an in-
creased threshold to remove noise.

5.2 Improved Edge Detection

By using coefficients for intensity and volume, in some
circumstances we are able to produce better edge maps.
For example when using the image Silicon.bmp the results
shown in Fig. 7 are significantly better than Canny and Pre-
witt. In this example we adjusted the parameters to allow
more volume information than intensity to contribute to the
edges. When using the image Butterfly.bmp we were able
to produce high quality edge maps with less background
edges than Canny and Prewitt (Fig. 8) (we focussed on the
subject by using volume information, intensity information
or both). Experimentally we found that our algorithm was
able to match the edge map produced by Canny for most
test images; for example, Lemon and the standard Mandrill.
In some circumstances such as the previously mentioned
Silicon and Butterfly we were able to improve upon the re-
sults. However in some instances such as the standard test
image Lena, we found that it is not always the case that the
additional volume information contributes to an improved
edge map especially in regions of gradual intensity change
such as shadows. However, we still detected high quality
edges, and improve upon the edge maps of Prewitt.

5.3 GPU Implementation Results

This section presents results from our GPU experiments us-
ing an NVIDIA GTX 580 GPU and Intel i7 950 CPU. Us-
ing the five different test images discussed we recorded the
average runtime over 1000 iterations for our algorithm, the
aforementioned GPU CUDA Canny implementation and
the optimised OpenCV CPU Canny implementation. As

120

Figure 7. Edge maps for Silicon.bmp (top-left); ours (top-
right), Canny’s (bottom-left) and Prewitt’s (bottom-right)

Figure 8. Edge maps for Butterfly.bmp (top-left); ours (top-
right), Canny’s (bottom-left) and Prewitt’s (bottom-right)

OpenCV
Canny

Canny H10 Canny (H4) HSI Detection

Silicon
Lenna
Mandrill
Lemmon
Butterfly

8.01 2.33 1.42 0.48
7.95 2.41 1.46 0.46
9.05 2.34 1.43 0.44
8.95 2.48 1.49 0.48
5.8 2.22 1.45 0.52

Our Algorithm CUDA Canny
(4 hysteresis

steps)

CUDA Canny
(10 hysteresis

steps)

OpenCV
Canny

Our Algorithm 0.46 1.46 2.41 7.95

0

2.5

5

7.5

10

Silicon Lenna Mandrill Lemmon Butterfly

T
im

e
Ta

ke
n

(m
s)

OpenCV Canny
Canny H10
Canny (H4)
HSI Detection

Figure 9. A comparison of the average time taken by each
edge detection implementation using a variety of color in-
put images on the GPU and CPU

Input OpenCV GPU Canny H10/H4 HSI Detection
Silicon 8.01 2.33 / 1.42 0.48
Lenna 7.95 2.41 / 1.46 0.46

Mandrill 9.05 2.34 / 1.43 0.44
Lemmon 8.95 2.48 / 1.49 0.48
Butterfly 5.8 2.22 / 1.45 0.52

Table 1. The average time taken in milliseconds by each
edge detection implementation on the GPU and CPU

the results from the Canny CUDA implementation were
obtained used older Compute 1.0 hardware, we tested and
re-calculated the results using our updated setup to provide
a more accurate and fair comparison. The same applies
for the OpenCV implementation. Running the hysteresis
step four times as proposed by Luo and Duraiswami for
their CUDA Canny implementation was rarely sufficient
and we have also included timings from executing the step
10 times, producing a more accurate Canny output edge
map. In Fig. 9, Table 1, and Table 2, H4 (resp. H10)
means executing the hysteresis step 4 (resp.10) times. Fig.
9 and Table 1 show the times taken by the three imple-
mentations for the five mentioned images. Table 2 shows
the speedup attained by our algorithm.

6 Conclusion

We proposed a new edge detection method based on QCI in
HSI color space, which establishes a nonlinear relationship
between a pixel’s color and its volume. By using the QCI,

Input OpenCV Speedup GPU Canny H10/H4 Speedup
Silicon 16.69x 4.85x / 2.96x
Lenna 17.28x 5.24x / 3.17x

Mandrill 20.57x 5.32x / 3.25x
Lemmon 18.65x 5.17x / 3.10x
Butterfly 11.15x 4.27x / 2.79x

Table 2. The speedup of our algorithm obtained over the
OpenCV Canny implementation and GPU Canny Imple-
mentation

121

we are able to find edges that are not detectable when only
intensity information is used. Experimental results show
that our proposed algorithm performs better than Prewitt’s
algorithm. Moreover, in most of the cases, our algorithm
has a higher signal-to-noise ratio and is more robust than
Canny’s algorithm. The limitation of our proposed algo-
rithm is that the constant value for thresholding has to be
obtained manually, and which limits our ability in testing
large number of images for the proposed algorithm. We
implemented our algorithm in CUDA so as to utilize the
computing ability of GPUs. By optimizing the memory us-
age, for an image of size 512×512, the algorithm’s total ex-
ecution time is about 0.5ms (see Table 1), which means we
can detect edges for about 2, 000 images of size 512× 512
within one second. As shown in Table 2, our GPU imple-
mentation is up to 20 times faster than the IPP Canny algo-
rithm, and is about 5 times faster than the existing CUDA
Canny algorithm. Due to the speed of our algorithm we
would be able to process a video feed or array of images in
real time.

Our future research will focus on obtaining the con-
stant value for thresholding automatically for our proposed
algorithm and applying it in video tracking on the GPU.

References

[1] G. Papari and N. Petkov, “Edge and line oriented con-
tour detection: State of the art,” Image and Vision
Computing, vol. 29, no. 2-3, pp. 79–103, 2011.

[2] D. Ziou and S. Tabbone, “Edge detection techniques -
an overview,” International Journal of Pattern Recog-
nition and Image Analysis, vol. 8, pp. 537–559, 1998.

[3] C. Novak and S. A. Shafer, “Color edge detection,” in
Proceedings of DARPA Image Understanding Work-
shop, 1987, pp. 35–37.

[4] B. Bouda, L. Masmoudi, and D. Aboutajdine,
“Cvvefm: Cubical voxels and virtual electric field
model for edge detection in color images,” Signal
Processing, vol. 88, no. 4, pp. 905–915, 2008.

[5] C. Lopez-Molina, H. Bustince, J. Fernandez,
P. Couto, and B. D. Baets, “A gravitational approach
to edge detection based on triangular norms,” Pattern
Recognition, vol. 43, no. 11, pp. 3730 – 3741, 2010.

[6] P. Melin, O. Mendoza, and O. Castillo, “An improved
method for edge detection based on interval type-
2 fuzzy logic,” Expert Systems with Applications,
vol. 37, no. 12, pp. 8527 – 8535, 2010.

[7] L. G. Shapiro and G. C. Stockman, Computer Vision.
Prentice Hall, 2001.

[8] A. Koschan and M. Abidi, “Detection and classifi-
cation of edges in color images,” Signal Processing
Magazine, IEEE, vol. 22, no. 1, pp. 64 – 73, jan. 2005.

[9] O. M.A. and H. H., “Literature review
on edge detection,” http://www.essex.ac.uk
/csee/research/publications/technicalreports/2010/CES-
506.pdf, 2010, [Online; accessed 16-Sep.-2011].

[10] NVIDIA, “Nvidia cuda home,”
http://www.nvidia.com/object/cuda home new.html/,
2011, [Online; accessed 16-Sep.-2011].

[11] R. Duraiswami and R. Duraiswami, “Canny edge de-
tection on nvidia cuda,” 2008 IEEE Computer Society
Conference on Computer Vision and Pattern Recog-
nition Workshops, pp. 1–8, 2008.

[12] A. Evans, Advances in Nonlinear Signal and Image
Processing, ser. EURASIP Book Series on Signal
Processing and Communications. Hindawi Publish-
ing Corporation, 2006, ch. 12, pp. 329–356.

[13] S. Zhu, K. N. Plataniotis, and A. N. Venetsanopoulos,
“Comprehensive analysis of edge detection in color
image processing,” Optical Engineering, vol. 38, pp.
612–625, Apr. 1999.

[14] D. Marr and E. Hildreth, “Theory of edge detection,”
Proceedings of the Royal Society of London Series B,
vol. 207, pp. 187–217, 1980.

[15] M. Celebi, H. Kingravi, and F. Celiker, “Fast colour
space transformations using minimax approxima-
tions,” Image Processing, IET, vol. 4, no. 2, pp. 70
– 80, April 2010.

[16] F. Samopa and A. Asano, “Hybrid image thresholding
method using edge detection,” International Journal
of Computer Science and Network Security, vol. 9,
no. 4, pp. 292 – 299, 2009.

[17] L. Lam, S. Lee, and C. Suen, “Thinning
methodologies-a comprehensive survey,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, pp. 869–885, 1992.

[18] K. Ogawa, Y. Ito, and K. Nakano, “Efficient canny
edge detection using a gpu,” in 2010 First Inter-
national Conference on Networking and Computing.
IEEE, 2010, pp. 279–280.

[19] F. Perez and C. Koch, “Toward color image segmenta-
tion in analog vlsi: algorithm and hardware,” Interna-
tional Journal of Computer Vision, vol. 12, pp. 17–42,
February 1994.

[20] Z. Guo and R. W. Hall, “Parallel thinning with two-
subiteration algorithms,” Commun. ACM, vol. 32,
pp. 359–373, March 1989. [Online]. Available:
http://doi.acm.org/10.1145/62065.62074

[21] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm
for thinning digital patterns,” Commun. ACM, vol. 27,
pp. 236–239, March 1984. [Online]. Available:
http://doi.acm.org/10.1145/357994.358023

122

http://www.essex.ac.uk/csee/research/publications/technicalreports/2010/CES-506.pdf
http://www.essex.ac.uk/csee/research/publications/technicalreports/2010/CES-506.pdf
http://www.essex.ac.uk/csee/research/publications/technicalreports/2010/CES-506.pdf
http://www.nvidia.com/object/cuda_home_new.html
http://doi.acm.org/10.1145/62065.62074
http://doi.acm.org/10.1145/357994.358023

[22] J. Stam, “Convolution soup,”
http://www.nvidia.com/content/GTC/documents
/1412 GTC09.pdf, 2009, [Online; accessed 16-Sep.-
2011].

[23] S. Eddins, “Performance optimization for apply-
lut,” http://blogs.mathworks.com/steve/2008/06/13/
performance-optimization-for-applylut/, 2008, [On-
line; accessed 16-Sep.-2011].

123

http://www.nvidia.com/content/GTC/documents/1412_GTC09.pdf
http://www.nvidia.com/content/GTC/documents/1412_GTC09.pdf
http://blogs.mathworks.com/steve/2008/06/13 /performance-optimization-for-applylut/
http://blogs.mathworks.com/steve/2008/06/13 /performance-optimization-for-applylut/

	Introduction
	Edge Detection and GPU Applications
	Introduction to Edge Detection
	GPU and CUDA
	Related Work

	Main Steps of Our Algorithm
	CUDA Implementation
	Results
	Noise Tolerance
	Improved Edge Detection
	GPU Implementation Results

	Conclusions

