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Abstract— Let k ≥ 4 be even and letn ≥ 2. Consider a faulty
k-ary n-cube Qk

n in which the number of node faults fv and the
number of link faults fe are such thatfv +fe ≤ 2n−2. We prove
that given any two healthy nodess and e of Qk

n, there is a path
from s to e of length at leastkn − 2fv − 1 (resp. kn − 2fv − 2)
if the nodess and e have different (resp. the same) parities (the
parity of a node in Qk

n is the sum modulo2 of the elements in
the n-tuple over {0, 1, . . . , k − 1} representing the node). Our
result is optimal in the sense that there are pairs of nodes and
fault configurations for which these bounds cannot be improved,
and it answers questions recently posed by Yang, Tan and Hsu,
and by Fu. Furthermore, we extend known results, obtained by
Kim and Park, for the case whenn = 2.

Index Terms— interconnection networks, k-ary n-cubes, fault-
tolerance, embeddings, longest paths.

I. I NTRODUCTION

The choice of how we connect the processors in a distributed-
memory parallel machine is a fundamental design decision. There
are numerous, often conflicting considerations to bear in mind.
For instance, we would like our interconnection topology tobe
symmetric, have small diameter, be recursively decomposable, be
highly connected, be regular of low degree, support rapid and easy
inter-processor communication, support the simulation ofother
machines based on other topologies, and so on. There does not
exist an interconnection topology which is optimal on all accounts
and trade-offs generally have to be made.

An extremely popular interconnection topology is the hy-
percube. The hypercube has been used as the interconnection
topology of a number of distributed memory multiprocessors,
such as the Cosmic Cube [19], the Ametek S/14 [4], the iPSC
[9], [10], the Ncube [5], [10] and the CM-200 [6], and the
properties of hypercubes relevant to parallel computing have been
well studied. One drawback of the hypercube is that as the
dimension of a hypercube increases, so does the degree of its
nodes. Consequently, given a collection of processors, if we wish
to connect these processors in the topology of a hypercube then
we have no choice as to the degree of the nodes of the resulting
network. Thek-ary n-cube has been proposed as an alternative
to the hypercube. Thek-ary n-cube is very ‘hypercube-like’ and
has similar properties to the hypercube. Furthermore, the two
parameters available,k and n, allow us to regulate the degree
of the nodes yet still incorporate large numbers of processors,
although usually at a cost to some other property such as the
diameter or the connectivity. A number of distributed memory
multiprocessors have been built with ak-ary n-cube forming the
underlying topology, such as the Mosaic [20], the iWARP [7],the
J-machine [18], the Cray T3D [14] and the Cray T3E [3].

As more and more processors are incorporated into parallel
machines, faults become more common, be it faults in the pro-
cessors themselves or faults on the inter-processor connections.
Given the significant cost of parallel machines, we would prefer to

be able to tolerate small numbers of faults and still be able to use
our parallel machine. A key property we would like our ‘faulty’
machine to have is that a large number of the healthy processors
should remain in a connected component and be able to undertake
significant parallel computations. Numerous existing algorithms
for k-ary n-cubes utilize orderings of processors and involve the
use of long paths and cycles (note that a path in a multi-port
bi-directional network results in a closed path containingthe
nodes of the path exactly twice) and we would wish to utilize
such structures even in the presence of faults. Also, fundamental
and abundant in parallel computing are linear arrays and rings
of processors, and at the very least our faulty machine should
be able to simulate (the large number of) algorithms designed
for machines whose processors are joined in the form of linear
arrays or rings (see, for example, [2], [16]). We remark thatour
situation is of a different nature to that where a faulty network is
to simulate another (healthy) network but where this simulation
comes about due to an embedding of the healthy network in the
faulty network with low load, congestion and/or dilation (such a
scenario can be found in, for example, [1], [8], [12], [17] where
hypercubes, arrays and butterflies are considered).

In this paper we continue the study of thek-ary n-cube with
regard to the existence of long paths and cycles in the presence
of limited numbers of node and link faults. We are motivated
by the work in four recent publications. In [15], Kim and Park
study the existence of hamiltonian paths in two-dimensional tori.
They provide conditions when a two-dimensional torus with at
most2 faulty nodes is hamiltonian, hamiltonian-connected and bi-
hamiltonian-connected. In [11], Fu proves that ann-dimensional
hypercube withf ≤ n−2 faulty nodes is such that there is a path
of length at least2n − 2f − ǫ between any two distinct, healthy
nodes, whereǫ = 1 if the two nodes have different parities and
ǫ = 2 otherwise. In [13], Hsieh and Chang show that Fu’s result
holds even whenf ≤ 2n−5 but only so long as every healthy node
is adjacent to at least2 healthy nodes (the so-called conditional
fault assumption). In [22], Yang, Tan and Hsu proved that in a
k-ary n-cube wherek is odd, if the number of faulty nodes and
links is at most2n−3 then there is a hamiltonian cycle, and if the
number of faulty nodes and links is at most2n − 2 then there is
a hamiltonian path joining any two, distinct healthy nodes.Note
that Yang, Tan and Hsu prove no results whenk is even beyond
remarking that whenk is even, thek-ary n-cube is bipartite and
so if there is1 faulty node then there can be no hamiltonian cycle
and there exists a pair of distinct, healthy nodes not joinedby a
hamiltonian path.

Our main result is as follows. Letk ≥ 4 be even and letn ≥ 2.
In a faulty k-ary n-cubeQk

n in which the number of node faults
fn and the number of link faultsfe are such thatfn+fe ≤ 2n−2,
given any two healthy nodess ande of Qk

n, there is a path from
s to e of length at leastkn − 2fn − 1 (resp.kn − 2fn − 2) if the
nodess ande have different (resp. the same) parities. Our result:



resolves the situation in [22] whenk is even; answers questions
posed by Yang, Tan and Hsu, and by Fu; and extends known
results, obtained by Kim and Park, for the case whenn = 2. The
rest of this paper is devoted to a proof by induction of our main
theorem. Section II contains the basic definitions. In Section III,
we deal with the base case of the induction, and in Section IV,
we deal with the inductive step. We present our conclusions in
Section V.

II. BASIC DEFINITIONS

The k-ary n-cube Qk
n, for k ≥ 3 and n ≥ 2, haskn nodes

indexed by{0, 1, . . . , k−1}n, and there is a link((u1, u2, . . . , un),

(v1, v2, . . . , vn)) if, and only if, there existsd ∈ {1, 2, . . . , n} such
that min{|ud − vd|, k − |ud − vd|} = 1, andui = vi, for every
i ∈ {1, 2, . . . , n} \ {d}. Many structural properties ofk-ary n-
cubes are known, but of particular relevance for us is that ak-ary
n-cube is node-symmetric; that is, given any two distinct nodes
v and v

′ of Qk
n, there is an automorphism ofQk

n mappingv

to v
′. Throughout, we assume that addition on tuple elements is

modulok.
An index d ∈ {1, 2, . . . , n} is often referred to as adimension.

We canpartition Qk
n over dimension d by fixing thedth element

of any node tuple at some valuev, for everyv ∈ {0, 1, . . . , k−1}.
This results ink copiesQd,0, Qd,1, . . . , Qd,k−1 of Qk

n−1 (with
Qd,v obtained to fixing thedth element atv), with corresponding
nodes inQd,0, Qd,1, . . . , Qd,k−1 joined in a cycle of lengthk (in
dimensiond). Such a partition proves to be extremely useful (in
proofs by induction, as we shall see).

The parity of a nodev = (v1, v2, . . . , vn) of Qk
n is defined to

be
∑n

i=1 vi modulo2. We speak of a node as beingodd or even
according to whether its parity is odd or even. A pair of nodes
{v,v′} is odd (resp.even) if v and v

′ have different (resp. the
same) parities.

We write paths inQk
n as sequences of incident links, and when

k is even, paths necessarily consist of links joining, alternatively,
odd and even nodes. We often refer to a path asρ(u,v); the
notation denotes that this is a path joining nodeu and nodev.
On occasion we might refer to a link(x,y) as appearing on a
path ρ(u,v), or equivalently the pathρ(u,v) as containing the
link (x,y); when we do, the notation denotes that if we traverse
the pathρ(u,v) starting at nodeu then we shall reach nodex
immediately before we reach nodey. If ρ(u,v) is a path andx
and y are nodes on this path thenρ(x,y) denotes the sub-path
of ρ(u,v) starting atx and ending aty.

A fault in Qk
n refers to a faulty node or a faulty link. If a node

is faulty then we imagine that the node and its incident linksdo
not exist; if a link is faulty then we imagine that this link does
not exist. When we refer to a path in a faultyQk

n, we mean that
all nodes and links on the path should be non-faulty, i.e.,healthy
(unless otherwise stated).

We repeatedly apply the following construction throughout.
Suppose that we have partitioned ak-ary n-cubeQk

n over some
dimensiond so as to obtaink-ary (n − 1)-cubesQd,0, Qd,1, . . . ,

Qd,k−1 and that we have a pathρ(u,v) in Qk
n of lengthl. Suppose

also that(xi,yi) is a link of ρ(u,v), with xi,yi ∈ Qd,i, and that
we have another pathρ′(xi+1,yi+1) of length l′ which shares
no nodes in common withρ(u,v), wherexi+1 andyi+1 are the
neighbours ofxi andyi, respectively, inQd,i+1. We refer to the
path obtained by removing the link(xi,yi) from ρ(u,v) and re-
placing it with the path(xi,xi+1), ρ

′(xi+1,yi+1), (yi+1,yi), so

as to obtain a new path fromu to v of lengthl+ l′+1, as thejoin
of ρ(u,v) to ρ′(xi+1,yi+1) over (xi,yi). We can equally well
join two paths over a sub-path rather than a link; with the above
notation, we would remove a sub-pathρ(xi,yi) from ρ(u,v) and
replace it with the path(xi,xi+1), ρ

′(xi+1,yi+1), (yi+1,yi). We
have analogous constructions should we wish to join: a cycleand
a path, to obtain a path; or two cycles, to obtain a cycle (when
joining a cycle, we lose one edge from the cycle).

Henceforth, for reasons of clarity, we drop the use of bold
type to denote nodes ofQk

n (hitherto, we have used bold type to
emphasize the representation of nodes as tuples of elements).

III. T HE BASE CASE

In this section, we deal with the base case of our forthcoming
inductive proof of the main result, namely when we have ak-ary
2-cube with no more than2 faults. We begin with some notation
specific to our constructions in this section.

We considerQk
2 as ak×k grid with wrap-around and we think

of a nodevi,j as indexed by itsrow i and column j. Given two
row indicesi, j ∈ {0, 1, . . . , k − 1}, wherej 6= i, we define the
row-torus rt(i, j) to be the subgraph ofQk

2 induced by the nodes
on rowsi, i+1, . . . , j, if i < j, or rowsi, i+1, . . . , k−1, 0, . . . , j,
if j < i, but with all column links between nodes on rowj and
nodes on rowi removed if i = j + 1 or (i = 0 and j = k − 1).
Throughout, we assume that addition on row or column indices
is modulok.

We define the following paths in the row-torusrt(0, 1) (of some
Qk

2). The names of these paths are derived from the shape of their
pictorial representations (see the figures coming up). Also, if i = 0

then i = 1, and if i = 1 then i = 0.

C+
m(vi,j , vi,j) = (vi,j , vi,j+1), (vi,j+1, vi,j+2), . . . , (vi,m−1,

vi,m), (vi,m, vi,m), (vi,m, vi,m−1
),

(vi,m−1
, vi,m−2

), . . . , (vi,j+1
, vi,j)

where0 ≤ i ≤ 1, 0 ≤ j ≤ k − 1, 0 ≤ m ≤

k − 1 andm 6= j.

C−

m(vi,j , vi,j) = (vi,j , vi,j−1), (vi,j−1, vi,j−2), . . . , (vi,m+1,

vi,m), (vi,m, vi,m), (vi,m, vi,m+1
),

(vi,m+1
, vi,m+2

), . . . , (vi,j−1
, vi,j)

where0 ≤ i ≤ 1, 0 ≤ j ≤ k − 1, 0 ≤ m ≤

k − 1 andm 6= j.

N+(vi,j , vi,j′) = (vi,j , vi,j), (vi,j , vi,j+1
), (vi,j+1

, vi,j+1),

(vi,j+1, vi,j+2), (vi,j+2, vi,j+2
), (vi,j+2

,

vi,j+3
), (vi,j+3

, vi,j+3), (vi,j+3, vi,j+4),

. . . , (vi,j′
−1, vi,j′) where0 ≤ i ≤ 1, 0 ≤ j

6= j′ ≤ k − 1 and |j − j′| is even.

N−(vi,j , vi,j′) = (vi,j , vi,j), (vi,j , vi,j−1
), (vi,j−1

, vi,j−1),

(vi,j−1, vi,j−2), (vi,j−2, vi,j−2
), (vi,j−2

,

vi,j−3
), (vi,j−3

, vi,j−3), (vi,j−3, vi,j−4),

. . . , (vi,j′+1, vi,j′) where0 ≤ i ≤ 1, 0 ≤

j′ 6= j ≤ k − 1 and |j − j′| is even.
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Z+(vi,j , vi,j′) = (vi,j , vi,j+1), (vi,j+1, vi,j+1
), (vi,j+1

,

vi,j+2
), (vi,j+2

, vi,j+2), (vi,j+2, vi,j+3),

(vi,j+3, vi,j+3
), (vi,j+3

, vi,j+4
), (vi,j+4

,

vi,j+4), . . . , (vi,j′ , vi,j′) where0 ≤ i ≤

1, 1 ≤ j 6= j′ ≤ k − 1 and |j − j′| is even.

Z−(vi,j , vi,j′) = (vi,j , vi,j−1), (vi,j−1, vi,j−1
), (vi,j−1

,

vi,j−2
), (vi,j−2

, vi,j−2), (vi,j−2, vi,j−3),

(vi,j−3, vi,j−3
), (vi,j−3

, vi,j−4
), (vi,j−4

,

vi,j−4), . . . , (vi,j′ , vi,j′) where0 ≤ i ≤

1, 1 ≤ j′ 6= j ≤ k − 1 and |j − j′| is even.

In addition, we defineC+

j (vi,j , vi,j) = C−

j (vi,j , vi,j) =

(vi,j , vi,j). We also use the above notation to describe paths in
other row-tori of the formrt(l, l + 1) in Qk

2 . Furthermore, if we
write, for example,N+(vi,j , vi,j+1), Z−(vi,j , vi,j) or some other
illegal node-pairing then we regard the path so denoted as being
the empty path.

We begin with two lemmas, the first concerning paths in a
row-torusrt(0, 1) in which there is a faulty node, and the second
concerning paths in a row-torusrt(0, p − 1) in which there are
no faults. These two lemmas are used repeatedly in the proofsof
the subsequent propositions, each of which deals with a specific
configuration of faults relating to the base case.

Lemma 1: Let k ≥ 4 be even and consider the row-torus
rt(0, 1) in Qk

2 where 1 node of the row-torus is faulty. If the pair
of distinct, healthy nodes {s, e} of the row-torus is odd (resp.
even) then there is a path ρ(s, e) in the row-torus joining s and
e of length at least 2k − 3 (resp. 2k − 4).

Proof: By the symmetric properties of the row-torusrt(0, 1),
w.l.o.g. we may assume that the fault is the nodev0,0.

Suppose thats ande are both odd. W.l.o.g. there are four cases.
(Throughout, we proceed by a case-by-case analysis, eliminating
some cases by applying automorphisms ofrt(0, 1) such as “re-
flections in the vertical bisecting plane” or “toroidal rotations”.)

Case (a) s and e both lie on row0 with s = v0,i, e = v0,j and
i < j. Consider the path

C+

j−1(v0,i, v1,i), Z
−(v1,i, v1,1), (v1,1, v1,0), (v1,0, v1,k−1),

N−(v1,k−1, v1,j), (v1,j , v0,j).

This path has length2k − 2 and is as depicted in Fig. 1(a).

Case (b) s ande lie on different rows withs = v0,i, e = v1,j and
i < j. Consider the path

C+

j−1(v0,i, v1,i), Z
−(v1,i, v1,1), (v1,1, v1,0), (v1,0, v1,k−1),

N−(v1,k−1, v1,j+1), (v1,j+1, v0,j+1), (v0,j+1, v0,j),

(v0,j , v1,j).

This path has length2k − 2 and is as depicted in Fig. 1(b).

Case (c) s ande lie on different rows withs = v0,i ande = v1,0.
Consider the path

C+

k−1
(v0,i, v1,i), Z

−(v1,i, v1,1), (v1,1, v1,0).

This path has length2k − 2 and is as depicted in Fig. 1(c).

Case (d) s and e both lie on row1 with s = v1,i, e = v1,j and
i < j. Consider the path

(a)
s e

(c)
s

e

(b)
s

e

(d)
s e

Figure 1. Cases (a)-(d) whenk = 8.

N−(v1,i, v1,0), (v1,0, v1,k−1), N
−(v1,k−1, v1,j+1), (v1,j+1,

v0,j+1), (v0,j+1, v0,j), C
−

i+1(v0,j , v1,j).

This path has length2k − 2 and is as depicted in Fig. 1(d).

Suppose now thats ande are both even. W.l.o.g. there are three
cases.

Case (e) s and e both lie on row0 with s = v0,i, e = v0,j and
i < j. Consider the path

C+

j−1(v0,i, v1,i), Z
−(v1,i, v1,2), (v1,2, v1,1), (v1,1, v1,0), (v1,0,

v1,k−1), N
−(v1,k−1, v1,j+1), (v1,j+1, v0,j+1), (v0,j+1,

v0,j).

This path has length2k− 4 and is similar to the path depicted in
Fig. 1(a).

Case (f ) s ande lie on different rows withs = v0,i, e = v1,j and
i < j. Consider the path

C+

j−1(v0,i, v1,i), Z
−(v1,i, v1,2), (v1,2, v1,1), (v1,1, v1,0), (v1,0,

v1,k−1), N
−(v1,k−1, v1,j).

This path has length2k− 4 and is similar to the path depicted in
Fig. 1(b).

Case (g) s and e both lie on row1 with s = v1,i, e = v1,j and
i < j. Consider the path

N−(v1,i, v1,1), (v1,1, v1,0), (v1,0, v1,k−1), N
−(v1,k−1, v1,j+2),

(v1,j+2, v0,j+2), (v0,j+2, v0,j+1), (v0,j+1, v0,j), C
−

i+1(v0,j ,

v1,j).

This path has length2k− 4 and is similar to the path depicted in
Fig. 1(d).

Suppose now that one ofs ande is odd and one is even, and,
further, thats ande lie on the same row. W.l.o.g. there are three
cases.

Case (h) s and e both lie on row0 with s = v0,i odd, e = v0,j

even andi < j. Consider the path

C+

j−1(v0,i, v1,i), Z
−(v1,i, v1,1), (v1,1, v1,0), (v1,0, v1,k−1),

N−(v1,k−1, v1,j+1), (v1,j+1, v0,j+1), (v0,j+1, v0,j).

3



This path has length2k − 3 and is as depicted in Fig. 2(h).

(i)
s e

(j)
s e

(h)
s e

Figure 2. Cases (h)-(j) whenk = 8.

Case (i) s and e both lie on row1 with s = v1,i odd, e = v1,j

even and0 6= i < j. Consider the path

C+

j−1(v1,i, v0,i), Z
−(v0,i, v0,2), (v0,2, v0,1), (v0,1, v1,1), (v1,1,

v1,0), (v1,0, v1,k−1), N
−(v1,k−1, v1,j).

This path has length2k − 3 and is as depicted in Fig. 2(i).

Case (j) s and e both lie on row1 with s = v1,0 and e = v1,j

even. Consider the path

(v1,0, v1,k−1), N
−(v1,k−1, v1,j+2), (v1,j+2, v0,j+2), (v0,j+2,

v0,j+1), (v0,j+1, v0,j), C
−

1 (v0,j , v1,j).

This path has length2k − 3 and is as depicted in Fig. 2(j).

Suppose now that one ofs ande is odd and one is even, and,
further, thats and e lie on different rows. W.l.o.g. there are five
cases.

Case (k) s lies on row0 and e lies on row1 with s = v0,i odd,
e = v1,j even andi < j. Consider the path

C+

j−1(v0,i, v1,i), Z
−(v1,i, v1,1), (v1,1, v1,0), (v1,0, v1,k−1),

N−(v1,k−1, v1,j).

This path has length2k − 3 and is as depicted in Fig. 3(k).

Case (l) s ande lie on different rows withs = v0,i odd,e = v1,i

even andi 6= 1. Consider the path

Z−(v0,i, v0,3), (v0,3, v0,2), (v0,2, v1,2), (v1,2, v1,1), (v1,1, v1,0),

(v1,0, v1,k−1), N
−(v1,k−1, v1,j).

This path has length2k − 3 and is as depicted in Fig. 3(l).

Case (m) s ande lie on different rows withs = v0,i even,e = v1,i

odd andi < j. Consider the path

C+

j−1(v0,i, v1,i), Z
−(v1,i, v1,2), (v1,2, v1,1), (v1,1, v1,0), (v1,0,

v1,k−1), N
−(v1,k−1, v1,j+1), (v1,j+1, v0,j+1), (v0,j+1,

v0,j), (v0,j , v1,j).

(n)

(k)
s

e

(o)
s

e

(l)
s

e

(m)
s

e

s

e

Figure 3. Cases (k)-(o) whenk = 8.

This path has length2k − 3 and is as depicted in Fig. 3(m).

Case (n) s and e lie on different rows withs = v0,i even and
e = v1,0. Consider the path

C+

j−1(v0,i, v1,i), Z
−(v1,i, v1,2), (v1,2, v1,1), (v1,1, v1,0).

This path has length2k − 3 and is as depicted in Fig. 3(n).

Case (o) s ande lie on different rows withs = v0,i even,e = v1,i

odd. Consider the path

Z−(v0,i, v0,2), (v0,2, v0,1), (v0,1, v1,1), (v1,1, v1,0), (v1,0,

v1,k−1), N
−(v1,k−1, v1,j+1), (v1,j+1, v1,j).

This path has length2k − 3 and is as depicted in Fig. 3(o).

The result follows.
The following lemma proves to be useful throughout.
Lemma 2: Let k ≥ 4 be even and consider the row-torus

rt(0, p − 1) in Qk
2 where 2 ≤ p ≤ k. If the pair of distinct nodes

{s, e} of the row-torus is odd (resp. even) then there is a path
ρ(s, e) in the row-torus joining s and e of length pk − 1 (resp.
pk − 2).

Proof: We proceed by induction onp. Suppose thatp = 2

and consider the row-torusrt(0, 1). W.l.o.g. we may assume that
e = v0,0.

Suppose thats = v0,i is odd. The path

C+

k−1
(s, v1,i), Z

−(v1,i, v1,1), (v1,1, v1,0), (v1,0, e)

has length2k − 1.
Suppose thats = v0,i is even. The path

C+

k−1
(s, v1,i), Z

−(v1,i−2, v1,2), (v1,2, v1,1), (v1,1, v1,0), (v1,0, e)

has length2k − 2.
Suppose thats = v1,i is odd. The path

C+

k−1
(s, v0,i), Z

−(v0,i, e)

has length2k − 1.
Suppose thats = v1,i is even. The path

C+

k−1
(s, v0,i), Z

−(v0,i, v0,1), (v0,1, e)
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has length2k − 2. So the result holds forp = 2.
Suppose, as our induction hypothesis, that the result holdsfor

all p such that1 ≤ p < q, where1 < q ≤ k−1. Considerrt(0, q).

Case (a) It is not the case thats lies on row0 ande lies on row
q, and it is not the case thats lies on rowq ande lies on row0.

W.l.o.g. assume thats ande lie in rt(0, q − 1). By the induction
hypothesis, there is a pathρ(s, e) in rt(0, q − 1) of length
qk − 1 (resp. qk − 2) if {s, e} is odd (resp. even). A simple
counting argument yields that the pathρ(s, e) must contain a link
(vq−1,i, vq−1,i+1) lying on row q − 1. Consider the path

ρ(s, vq−1,i), (vq−1,i, vq,i), (vq,i, vq,i−1), (vq,i−1, vq,i−2), . . . ,

(vq,i+2, vq,i+1), (vq,i+1, vq−1,i+1), ρ(vq−1,i+1, e).

This path is as required (with reference to our constructionas
detailed at the beginning of this section, an alternative description
of this path would be as that obtained by joiningρ(s, e) to the
cycle

(vq,0, vq,1), (vq,1, vq,2), . . . , (vq,k−2, vq,k−1), (vq,k−1, vq,0)

over the links(vq−1,i, vq−1,i+1) and (vq,i, vq,i+1)).

Case (b) The nodes lies on row0 and the nodee lies on rowq.

If e = vq,i then definee′ = vq−1,i−1. Note thate is odd if, and
only if, e′ is odd. By the induction hypothesis, there is a path
ρ(s, e′) in rt(0, q − 1) of lengthqk − 1 (resp.qk − 2) if {s, e} is
odd (resp. even). The path

ρ(s, e′), (e′, vq,i−1), (vq,i−1, vq,i−2), (vq,i−2, vq,i−3),

. . . , (vq,i+1, e)

is as required.

The result follows by induction.
We now deal with first scenario in the base case.
Proposition 3: Consider the k-ary 2-cube Qk

2 where k ≥ 6 is
even and where 2 of the nodes are faulty. Let s and e be any
two distinct, non-faulty nodes. There is a path of length at least
k2 − 5 (resp. k2 − 6) from s to e if {s, e} is odd (resp. even).

Proof: W.l.o.g. suppose that the two faulty nodes aref0 =

v0,0 andf1 = vp,p′ with p 6= 0. We begin by partitioningQk
2 into

3 or 4 row-tori. If p ∈ {1, 2, k − 2, k − 1} then:
• if p = 1 or p = 2 then we partitionQk

2 into A = rt(k−1, 0),
B = rt(1, 2) andX = rt(3, k − 2);

• if p = k − 2 or p = k − 1 then we partitionQk
2 into A =

rt(0, 1), X = rt(2, k − 3) andB = rt(k − 2, k − 1).
If p 6∈ {1, 2, k − 2, k − 1} then:

• if p 6= 3 is odd then we partitionQk
2 into A = rt(0, 1),

X = rt(2, p− 2), B = rt(p− 1, p) andY = rt(p+1, k− 1);
• if p = 3 then we partitionQk

2 into A = rt(k − 1, 0), X =

rt(1, 2), B = rt(3, 4) andY = rt(5, k − 2);
• if p is even then we partitionQk

2 into A = rt(0, 1), X =

rt(2, p − 1), B = rt(p, p + 1) andY = rt(p + 2, k − 1).
The outcome is that we have one of the two partitioned structures
as in Fig. 4, where consecutive row-tori are joined by column
links. In particular, w.l.o.g. we may assume that: when the
partition involves3 row-tori, we have the situation as in Fig. 4(a),
with f0 = v0,0 ∈ A = rt(0, 1), X = rt(2, k − 3) and f1 ∈ B =

rt(k − 2, k − 1); and when the partition involves4 row-tori, we
have the situation as in Fig. 4(b), with f0 = v0,0 ∈ A = rt(0, 1),
X = rt(2, q− 1), f1 ∈ B = rt(q, q +1) andY = rt(q +2, k− 1),
for some evenq where4 ≤ q ≤ k − 4.

A A

B

Y

XX

B

f 0

f 1

f 0

f 1

(a) (b)

Figure 4. PartitionedQk
2 ’s.

Throughout the proof,ǫ = 1 if {s, e} is odd, andǫ = 2 if {s, e}

is even.
Case (a) Qk

2 is partitioned into3 row-tori.

Sub-case (i) The nodess ande both lie in A.

By Lemma 1, there exists a pathρA(s, e) in A of length at least
2k−2−ǫ. A simple counting argument yields that there is at least
one link of ρA(s, e) lying on row 1; w.l.o.g. let (v1,i, v1,i+1) be
such a link (the case when the link is(v1,i+1, v1,i) is almost
identical). By Lemma 2, there exists a pathρX(v2,i, v2,i+1) in X

of lengthk(k−4)−1. Let ρ(s, e) be obtained by joiningρA(s, e)

to ρX(v2,i, v2,i+1) over (v1,i, v1,i+1). Again, a simple counting
argument yields that there are at least two non-incident links of
ρ(s, e) lying on rowk−3; w.l.o.g. let(vk−3,j , vk−3,j+1) be such a
link wherevk−2,j 6= f1 6= vk−2,j+1. By Lemma 1, there exists a
path ρB(vk−2,j , vk−2,j+1) in B of length at least2k − 3. The
path obtained by joiningρ(s, e) to ρB(vk−2,j , vk−2,j+1) over
(vk−3,j , vk−3,j+1) has length at leastk2 − 4 − ǫ.

Sub-case (ii) The nodes is in A and the nodee is in X.
Choosev1,i such thatv1,i is odd if, and only if,s is even, and
v2,i 6= e (a simple counting argument yields that such a nodev1,i

exists). By Lemma 1, there exists a pathρA(s, v1,i) in A of length
at least2k − 3. By Lemma 2, there exists a pathρX(v2,i, e) in
X of lengthk(k − 4) − ǫ. Let ρ(s, e) be the path

ρA(s, v1,i), (v1,i, v2,i), ρX(v2,i, e).

A simple counting argument yields thatρ(s, e) contains at least
two non-incident links on rowk−3; w.l.o.g. let(vk−3,j , vk−3,j+1)

be a link of ρ(s, e) such thatvk−2,j 6= f1 6= vk−2,j+1. By
Lemma 1, there exists a pathρB(vk−2,j , vk−2,j+1) in B of
length at least2k − 3. The path obtained by joiningρ(s, e) to
ρB(vk−2,j , vk−2,j+1) over (vk−3,j , vk−3,j+1) has length at least
k2 − 4 − ǫ.

Sub-case (iii) The nodes is in A and the nodee is in B.

Choosev1,i such thatv1,i is odd if, and only if,s is even, and
v1,i 6= s. By Lemma 1, there exists a pathρA(s, v1,i) in A of
length at least2k − 3. Choosevk−2,j such thatvk−2,j is odd if,
and only if,e is even, andf1 6= vk−2,j . By Lemma 1, there exists
a pathρB(vk−2,j , e) in B of length at least2k−3. By Lemma 2,
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there exists a pathρX(v2,i, vk−3,j) in X of lengthk(k − 4) − ǫ.
The path

ρA(s, v1,i), (v1,i, v2,i), ρX(v2,i, vk−3,j), (vk−3,j , vk−2,j),

ρB(vk−2,j , e)

has length at leastk2 − 4 − ǫ.

Sub-case (iv) The nodess ande both lie in X.

By Lemma 2, there exists a pathρX(s, e) in X of length
k(k − 4) − ǫ. A simple counting argument yields thatρX(s, e)

always contains at least one link on row2 and also that there are
two non-incident links on rowk − 3, unless we have the special
situation wherek = 6, s ande have a common neighbour on row
k − 3 with this neighbour not lying onρX(s, e), and neithers
nor e is adjacent onρX(s, e) to a node on rowk − 3. Suppose
that there are two non-incident links on rowk − 3. W.l.o.g. let
(vk−3,j , vk−3,j+1) and (v2,i, v2,i+1) be links ofρX(s, e) where
vk−2,j 6= f1 6= vk−2,j+1. By Lemma 1, there exists a path
ρB(vk−2,j , vk−2,j+1) (resp.ρA(v1,i, v1,i+1)) in B (resp.A) of
length at least2k − 3. W.l.o.g. suppose that the nodesvk−3,j ,
vk−3,j+1, v2,i and v2,i+1 come in that order as we move along
the pathρX(s, e). The path

ρX(s, vk−3,j), (vk−3,j , vk−2,j), ρB(vk−2,j , vk−2,j+1),

(vk−2,j+1, vk−3,j+1), ρX(vk−3,j+1, v2,i), (v2,i, v1,i),

ρA(v1,i, v1,i+1), (v1,i+1, v2,i+1), ρX(v2,i+1, e)

has length at leastk2 − 4 − ǫ.
Alternatively, suppose that we are in the special situation

described above (and sok = 6). W.l.o.g. suppose thats = v3,0

ande = v3,2; so, the path(v3,3, v3,4), (v3,4, v3,5) is a sub-path of
ρX(s, e). If f1 6= v4,4 then we can find two links(v3,j , v3,j+1)

and (v2,i, v2,i+1) of ρX(s, e), as above, and so obtain our path
as required. So, suppose thatf1 = v4,4. Let ρB(v4,3, v4,5) be the
path

(v4,3, v4,2), (v4,2, v4,1), (v4,1, v4,0), (v4,0, v4,5),

and joinρX(s, e) to ρB(v4,3, v4,5) over(v3,3, v3,4), (v3,4, v3,5) to
obtain the pathρ(s, e) of length16 − ǫ. We can now joinρ(s, e)

to the cycle induced by the nodes on row5, over two appropriate
links, and to an appropriate pathρA(v1,i, v1,i+1) in A of length
at least9, as we did above, to obtain our required path of length
at least32 − ǫ (that is,k2 − 4 − ǫ).

The remaining sub-cases are essentially identical to thosealready
considered.

Case (b) Qk
2 is partitioned into4 row-tori.

If s and e lie in A ∪ X ∪ B then by the analysis for Case (a),
there is a pathρ(s, e) in A ∪ X ∪ B (and the connecting column
links) of length at leastk(q + 2) − 4 − ǫ (note that all paths
constructed in Case (a) actually lie in the row-torus induced by
A ∪ X ∪ B). A simple counting argument yields that there is at
least one link ofρ(s, e) on rowq+1 or on row0; w.l.o.g. suppose
that it is rowq + 1 and let(vq+1,j , vq+1,j+1) be such a link. By
Lemma 2, there exists a pathρY (vq+2,j , vq+2,j+1) in Y of length
k(k − 1 − q − 1) − 1. Join ρ(s, e) to ρY (vq+2,j , vq+2,j+1) over
(vq+1,j , vq+1,j+1) to obtain a path of length at leastk2 − 4 − ǫ.
A similar argument holds shoulds ande lie in B ∪ Y ∪ A.

Necessarily, the only remaining case is whens lies in X and
e lies in Y . Let v0,i be such thats ande do not lie on columni
andv0,i is odd if, and only if,e is odd. By Lemma 2, there exists

a pathρY (vk−1,i, e) in Y of lengthk(k− 1− q− 1)− 1. Let v1,j

be such thats does not lie on columnj and v1,j is odd if, and
only if, s is odd. By Lemma 2, there exists a pathρX(s, v2,j)

in X of length k(q − 2) − 1. By Lemma 1, there exists a path
ρA(v1,j , v0,i) in A of length at least2k−2− ǫ. Let ρ(s, e) be the
path

ρX(s, v2,j), (v2,j , v1,j), ρA(v1,j , v0,i), (v0,i, vk−1,i),

ρY (vk−1,i, e).

Necessarily, there are at least two non-incident links of
ρX(s, v2,j) on rowq−1; w.l.o.g. let(vq−1,m, vq−1,m+1) be such
a link with vq,m 6= f1 6= vq,m+1. By Lemma 1, there exists a
pathρB(vq,m, vq,m+1) in B of length2k − 3. The path obtained
by joining ρ(s, e) to ρB(vq,m, vq,m+1) over (vq−1,m, vq−1,m+1)

has length at leastk2 − 4 − ǫ. The result follows.
We deal with the case whenk = 4 later (as we do also for

subsequent propositions).
The next proposition deals with the next scenario in the base

case.
Proposition 4: Consider the k-ary 2-cube Qk

2 where k ≥ 6 is
even and where 1 of the nodes is faulty. Let s and e be any two
distinct, non-faulty nodes. There is a path of length at least k2−3

(resp. k2 − 4) from s to e if {s, e} is odd (resp. even).
Proof: The proof is a much simplified version of the proof

of Proposition 3. Essentially, we partitionQk
2 into 2 row-tori,

A = rt(0, 1) andX = rt(2, k − 1), and follow the constructions
in Sub-cases (a.i), (a.ii) and (a.iv). The result follows.

We now consider when there are only faulty links inQk
2 , but

first we construct some basic hamiltonian circuits on row-tori.
Consider the row-torusrt(0, p−1) in Qk

2 , for some evenp where
2 ≤ p ≤ k − 1. For every eveni ∈ {0, 1, . . . , p − 2}, build the
following cycle Ci:

(vi,0, vi,1), (vi,1, vi,2), . . . , (vi,k−2, vi,k−1), (vi,k−1, vi+1,k−1),

(vi+1,k−1, vi+1,k−2), . . . , (vi+1,1, vi+1,0), (vi+1,0, vi,0).

Join the cycleC0 to the cycleC2 over the links(v1,0, v1,1) and
(v2,0, v2,1), and denote the resulting cycle byE0,0. Now join
E0,0 to the cycleC4 over the links(v3,0, v3,1) and (v4,0, v4,1),
and denote the resulting cycle byE0,0 also. Proceed in this way
to obtain the hamiltonian cycleE0,0 of the row-torusrt(0, p− 1)

rooted atv0,0.
If 3 ≤ p ≤ k−1 is odd then build the cycleE0,0 in the row-torus

rt(0, p− 2) and join it to the cycle induced by the nodes on row
p−1, over the links(vp−2,0, vp−2,1) and(vp−1,0, vp−1,1); denote
the resulting cycle as the cycleE0,0 of rt(0, p−1) rooted atv0,0.
The hamiltonian cycleE0,0 in rt(0, 6) in Q7

2 can be visualised as
in Fig. 5.

Note that we also have the hamiltonian cyclesE0,i of rt(0, p−

1), for all p ∈ {2, 3, . . . , k} and i ∈ {1, 2, . . . , k − 1}, obtained
by starting the above process at the root-nodev0,i as opposed to
nodev0,0.

Proposition 5: Consider the k-ary 2-cube Qk
2 where k ≥ 6 is

even and where there is 1 faulty link. Let s and e be any two
distinct nodes in the row-torus rt(0, p − 1), where 2 ≤ p ≤ k.
There is a path in rt(0, p− 1) from s to e of length pk − 1 (resp.
pk − 2) if {s, e} is odd (resp. even).

Proof: By Lemma 2, we may assume that the faulty link
lies in rt(0, p − 1). W.l.o.g. we may assume that the faulty link
is either(va,0, va+1,0) or (va,0, va,1), where0 ≤ a ≤ p − 2. As
before,ǫ = 1 if {s, e} is odd, andǫ = 2 if {s, e} is even.
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Figure 5. The hamiltonian cycleE0,0 in rt(0, 6) in Q7
2.

Case (a) a = 0, and the faulty link is(v0,0, v1,0).

Sub-case (i) s ande lie on row 0.

If s = v0,i and e = v0,j then w.l.o.g. we may assume thati < j

and that it is not the case that bothi = 0 and j = k − 1.
Suppose that it is not the case thati = 1 and j = k − 1. Let

ρ0(s, e) be the path

(s, v0,i−1), (v0,i−1, v0,i−2), . . . , (v0,j+1, e).

Note that the length ofρ0(s, e) is odd if, and only if,{s, e} is
odd; so, there are an even number of nodes on row0 that are
not onρ0(s, e) if, and only if, {s, e} is odd. LetC be the cycle
induced by the nodes on row1. Iteratively join C to appropriate
links (v0,l, v0,l+1) over (v1,l, v1,l+1) so that the nodes used on
row 0 do not already appear onρ0(s, e). Links should be replaced
(by paths) so that if{s, e} is odd (resp. even) then every node of
rt(0, 1) appears on the (amended) cycleC or on ρ0(s, e) (resp.
except one). Joinρ0(s, e) to C over two corresponding links (this
is always possible) and denote the new path byρA(s, e). The path
ρA(s, e) has length2k − ǫ. This construction can be visualised
in Fig. 6, where the dashed links show howρ0(s, e) is joined to
the amendedC.

s e

Figure 6. Joiningρ0(s, e) to the amended cycleC.

Suppose thati = 1 and j = k − 1. Let ρ0(s, e) be the path

(s, v0,2), (v0,2, v0,3), . . . , (v0,k−2, e).

Let C be the cycle induced by the nodes on row1. Joinρ0(s, e)

to C over (v0,1, v0,2) and (v1,1, v1,2), and denote the new path
by ρA(s, e). The pathρA(s, e) has length2k − 2.

If p = 2 then we are done. Ifp > 3 then let D be the
hamiltonian cycleE2,0 in the row-torusrt(2, p− 1), and if p = 3

then let D be the cycle induced by the nodes on row2. Join
ρA(s, e) to D over two corresponding links, and the resulting
path is as required.

Sub-case (ii) s lies on row0 ande lies on row1.

Let s = v0,i ande = v1,j ; w.l.o.g. we may assume thati 6= k−1.
If i 6= 1 then lete′ be a neighbour ofs on row0 that does not lie

in the same column ase. If i = 1 and j 6= 2 then lete′ = v0,2.
Either way, letρ0(s, e

′) be a path on row0 of length k − 1. If
i = 1 and j = 2 then lete′ = v0,3 and letρ0(s, e

′) be a path on
row 0 of lengthk − 2.

Let s′ be the neighbour ofe′ on row 1 and let ρ1(s
′, e) be

a path on row0 which contains the link(v1,0, v1,1). Define the
pathρA(s, e) as

ρ0(s, e
′), (e′, s′), ρ1(s

′, e).

Iteratively join ρA(s, e) to appropriate links(v1,l, v1,l+1) over
(v0,l, v0,l+1) so that the nodes used on row1 do not already
appear onρA(s, e). Links should be replaced (by paths) so that
if {s, e} is odd (resp. even) then every node ofrt(0, 1) appears
on (the amended)ρA(s, e) (resp. except one).

If p = 2 then we are done. Ifp > 3 then let D be the
hamiltonian cycleE2,0 in the row-torusrt(2, p− 1), and if p = 3

then let D be the cycle induced by the nodes on row2. Join
ρA(s, e) to D over the links (v1,0, v1,1) and (v2,0, v2,1). The
resulting path is as required.

Note that ifp = 2 then we have covered all cases, so henceforth
we assume thatp ≥ 3.

Sub-case (iii) s lies on row0 ande lies on rows2, 3, . . . , p − 1.

Suppose thats = v0,i. If i 6= 1 then definee′ = v0,i−1, and if
i = 1 then definee′ = v0,i+1. Define the pathρ0(s, e

′) to be the
path on row0 of lengthk − 1. Let e′′ be the neighbour ofe′ on
row 1, and lete′′′ be a neighbour ofe′′ on row 1 that does not
lie in the same column ase. Define the pathρ1(e

′′, e′′′) as the
path of lengthk − 1 on row 1. Define the pathρA(s, e′′′) as

ρ0(s, e
′), (e′, e′′), ρ1(e

′′, e′′′).

The pathρA(s, e′′′) has length2k − 1.
Let s′ be the neighbour ofe′′′ on row 2. If p ≥ 4 then by

Lemma 2, there is a pathρX(s′, e) in rt(2, p−1) of lengthk(p−

2) − ǫ, and the path

ρA(s, e′′′), (e′′′, s′), ρX(s′, e)

is as required. Ifp = 3 then define the pathρX(s′, e) to be a path
on row 2, and letρ(s, e) be the path

ρA(s, e′′′), (e′′′, s′), ρX(s′, e).

Iteratively join ρ(s, e) to appropriate links(v2,l, v2,l+1) over
(v1,l, v1,l+1) so that the nodes used on row2 do not already
appear onρ(s, e). Links should be replaced (by paths) so that
if {s, e} is odd (resp. even) then every node of row2 appears
on the amended path (resp. except one). The resulting path isas
required.

Sub-case (iv) s ande lie on row 1.

Proceed as in Sub-case (i) to build a path (analogous to)ρA(s, e).
The pathρA(s, e) is such that it contains a link on row1. Join
ρA(s, e) to the cycleD, as constructed in Sub-case (i) and over
corresponding links, to obtain a required path.

Sub-case (v) s lies on rows1, 2, . . . , p − 1 and e lies on rows
2, 3, . . . , p − 1.

By Lemma 2, there exists a pathρ(s, e) in rt(1, p − 1) of length
(p − 1)k − ǫ. There is at least one link ofρ(s, e) on row 1 that
is not incident withv1,0. Joinρ(s, e) to the cycle induced by the
nodes on row0 over two corresponding links to obtain a required
path.
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Case (b) 0 6= a 6= p − 2 and the faulty link is(va,0, va+1,0).

Sub-case (i) s ande lie on rows0, 1, . . . , a.

By Lemma 2, there is a pathρA(s, e) in rt(0, a) of length (a +

1)k − ǫ. Either: there exist2 disjoint links of ρA(s, e) on row a,
and so we have a link ofρA(s, e) on row a that is not incident
with va,0; or k = 6 and the nodesva,2, va,3, va,4 constitutes, e

and a node not onρA(s, e). However, in this latter case, letE0,0

be the hamiltonian cycle inrt(0, a) but with the sub-path froms
to e involving (some of) the nodesva,2, va,3, va,4 removed (so,
the length of this sub-path is1, if {s, e} is odd, and2, if {s, e}

is even). Either way, we obtain a path, call itρA(s, e), in rt(0, a)

of length (a + 1)k − ǫ with the property that there is a link of
ρA(s, e) on row a that is not incident withva,0.

JoinρA(s, e) to the hamiltonian cycleEa+1,0 of rt(a+1, p−1),
over some appropriate links, and the path obtained is as required.

Sub-case (ii) s lies on rows0, 1, . . . , a and e lies on rowsa +

1, a + 2, . . . , p − 1.

Suppose that we can choosee′ on rowa such that:va,0 6= e′ 6= s;
e and e′ are not adjacent; and{s, e′} = {s, e}. If so then by
Lemma 2, there is a pathρA(s, e′) in rt(0, a) of length(a+1)k−ǫ

so that e is not adjacent toe′. Define s′ to be the neighbour
of e′ on row a + 1. By Lemma 2, there is a pathρX(s′, e) in
rt(a + 1, p − 1) of length (p − a − 1)k − 1. The path

ρA(s, e′), (e′, s′), ρX(s′, e)

is as required.
Alternatively, suppose thate′ does not exist. This only happens

whenk = 6, and (s = va,2 ande = va+1,4) or (s = va,4 ande =

va+1,2). Definee′ = va,3 and letE0,0 be the hamiltonian cycle
in rt(0, a) with the link (s, e′) removed; call this pathρA(s, e′).
By Lemma 2, there is a pathρX(va+1,3, e) in rt(a + 1, p− 1) of
length (p − a − 1)k − 1. The path

ρA(s, e′), (e′, va+1,3), ρX(va+1,3, e)

is as required.

Case (c) a = 0 and the faulty link is(v0,0, v0,1).

Sub-case (i) s ande lie on row 0.

Let ρ0(s, e) be the path on row0 which contains the faulty link
(v0,0, v0,1), and letC be the cycle induced by the nodes on row
1. Join ρ0(s, e) to C over the links(v0,0, v0,1) and (v1,0, v1,1),
and denote the resulting path byρ(s, e). Iteratively joinρ(s, e) to
appropriate links(v0,l, v0,l+1) over(v1,l, v1,l+1) so that the nodes
used on row0 do not already appear onρ(s, e). Links should be
replaced (by paths) so that if{s, e} is odd (resp. even) then every
node of row0 appears on the amended path (resp. except one).
Denote the amended path byρ(s, e) also.

If p > 3 then letD be the hamiltonian cycleE2,0 in rt(2, p−1),
and if p = 3 then letD be the cycle induced by the nodes of row
2. Joiningρ(s, e) to D over two corresponding links yields a path
as required.

Sub-case (ii) s lies on row0 ande lies on row1.

Suppose thats = v0,i ande = v1,j . W.l.o.g. we may assume that
i is odd.

If {s, e} is odd and1 ≤ j < i then defineρ(s, e) as

C+
0 (s, v1,i), Z

−(v1,i, v1,j+2), (v1,j+2, v1,j+1), (v1,j+1, v0,j+1),

(v0,j+1, v0,j), C
−

1 (v0,j , e).

If {s, e} is odd andi < j ≤ k − 1 then defineρ(s, e) as

C−

1 (s, v1,i), Z
+(v1,i, v1,j−2), (v1,j−2, v1,j−1), (v1,j−1, v0,j−1),

(v0,j−1, v0,j), C
+

k−1
(v0,j , e).

If {s, e} is odd andi = j then defineρ(s, e) asC+
0

(s, e), and
if i 6= 1 then defineC as the cycle

C−

1 (v0,i−1, v1,i−1), (v1,i−1, v0,i−1).

If {s, e} is even and2 ≤ j < i then defineρ(s, e) as

C+
0 (s, v1,i), Z

−(v1,i, v1,j+3), (v1,j+3, v1,j+2), (v1,j+2, v0,j+2),

(v0,j+2, v0,j+1), (v0,j+1, v0,j), C
−

0 (v0,j , e).

If {s, e} is even andj = 0 then defineρ(s, e) as

C−

1 (s, v1,i), Z
+(v1,i, v1,k−1), (v1,k−1, e).

If {s, e} is even andi < j ≤ k − 1 then defineρ(s, e) as

C−

1 (s, v1,i), Z
+(v1,i, v1,j−3), (v1,j−3, v1,j−2), (v1,j−2,

v1,j−1), (v1,j−1, v0,j−1), (v0,j−1, v0,j), C
+
0 (v0,j , e).

If p > 3 then letD be the hamiltonian cycleE2,0 of rt(2, p−1),
and if p = 3 then letD be the cycle induced by the nodes on row
2. If there is a cycleC then joinC andD over two corresponding
links and denote the new cycle byD also. Now joinρ(s, e) to
the cycleD, and the path obtained is as required.

Sub-case (iii) s lies on row0 ande lies on rows2, 3, . . . , p − 1.

Suppose thatp > 3. If {s, e} is even then let the nodee′ on
row 1 be such thate′ and s have a common neighbour on row
0 and also such thate′ does not lie on the same column ase. If
{s, e} is odd then lete′ be the neighbour ofs on row 1. By the
construction in Sub-case (ii), there is a pathρA(s, e′) in rt(0, 1)

of length2k − ǫ.
Let s′ be the neighbour ofe′ on row 2 (note thats′ 6= e and

that {s′, e} is odd). By Lemma 2, there is a pathρX(s′, e) in
rt(2, p − 1) of length (p − 2)k − 1. The path

ρA(s, e′), (e′, s′), ρX(s′, e)

is as required.
Suppose thatp = 3. Let s′ be a neighbour ofe on row 2 so

that s′ does not lie on the same column ass, and lete′ be the
neighbour ofs′ on row 2. By the construction in Sub-case (ii),
there is a pathρA(s, e′) in rt(0, 1) of length2k− ǫ. Let ρX(s′, e)

be the path on row2 of lengthk − 1. The path

ρA(s, e′), (e′, s′), ρX(s′, e)

is as required.

Sub-case (iv) s ande lie on row 1.

Let s = v1,i and e = v1,j ; w.l.o.g. we may assume thati < j.
Let ρ1(s, e) be the path on row1 containing the link(v1,0, v1,1).
Joinρ1(s, e) to the cycle induced by the nodes on row0 over the
links (v1,0, v1,1) and(v0,0, v0,1), and denote the resulting path by
ρA(s, e). Iteratively joinρA(s, e) to appropriate links(v1,l, v1,l+1)

over (v0,l, v0,l+1) so that the nodes used on row1 do not already
appear onρA(s, e). Links should be replaced (by paths) so that
if {s, e} is odd (resp. even) then every node of row1 appears on
the amended path (resp. except one). Denote the amended path
by ρ(s, e).

If p ≥ 4 then letD be the hamiltonian cycleE2,1 of rt(2, p−1),
and if p = 3 then letD be the cycle induced by the nodes on
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row 2. Join ρ(s, e) to D over two corresponding links, and the
resulting path is as required.

Sub-case (v) s lies on row1 ande lies on rows2, 3, . . . , p − 1.

Suppose thatp ≥ 4. Let e′ be a neighbour ofs on row 1 such
that e does not lie on the same column ase′. We now define a
path ρA(s, e′) in rt(0, 1). If s = v1,1 and e′ = v1,0 then define
ρA(s, e′) as

N+(s, v1,k−1), (v1,k−1, v0,k−1), (v0,k−1, v0,0), (v0,0, e′);

if s = v1,0 ande′ = v1,1 then defineρA(s, e′) as

N−(s, v1,2), (v1,2, v0,2), (v0,2, v0,1), (v0,1, e′);

otherwise, letρ1(s, e
′) be the path on row1 containing the link

(v1,0, v1,1), and joinρ1(s, e
′) to the cycle induced by the nodes on

row 0 (which contains the faulty link) over the links(v1,0, v1,1)

and (v0,0, v0,1), denoting the resulting path byρA(s, e′) (joining
as we do results in the pathρA(s, e′) being fault-free).

Let s′ be the neighbour ofe′ on row 2. By Lemma 2, there is
a pathρX(s′, e) in rt(2, p − 1) of length (p − 2)k − ǫ. The path

ρA(s, e′), (e′, s′), ρX(s′, e)

is as required.
Suppose thatp = 3. Let e′ be a node on row1 such that

s 6= e′ ande′ is in a column adjacent to the column on whiche

lies. Clearly,{s, e} is odd if, and only if,{s, e′) is odd. We now
build a pathρA(s, e′) in rt(0, 1); w.l.o.g. we may assume that
s = v1,i, e′ = vi,j and i < j, with i 6= 0 (as usual, we can apply
automorphisms ofrt(0, 1) if necessary). If{s, e} is odd andi 6= 1

then defineρA(s, e′) as

C−

1 (s, v0,i), Z
+(v0,i, v0,j−1), (v0,j−1, v0,j), C

+
0 (v0,j , e

′).

If {s, e} is odd andi = 1 then defineρA(s, e′) as

N+(s, v1,j−1), (v1,j−1, v0,j−1), (v0,j−1, v0,j), C
+
0 (v0,j , e

′).

If {s, e} is even ands 6= 1 then defineρA(s, e′) as

C−

1 (s, v0,i), Z
+(v0,i, v0,j−2), (v0,j−2, v0,j−1), (v0,j−1, v0,j),

C+
0 (v0,j , e

′).

If {s, e} is even ands = 1 then defineρA(s, e′) as

N+(s, v1,j−2), (v1,j−2, v0,j−2), (v0,j−2, v0,j−1), (v0,j−1, v0,j),

C+
0 (v0,j , e

′).

Let s′ be the neighbour ofe′ on row 2 and letρX(s′, e) be the
path on row2 of lengthk − 1. The path

ρA(s, e′), (e′, s′), ρX(s′, e)

is as required.

Sub-case (vi) s ande lie on rows2, 3, . . . , p − 1.

Suppose thatp ≥ 4. By Lemma 2, there is a pathρX(s, e) in
rt(2, p − 1) of length (p − 2)k − ǫ. Let C be the cycle

C−

1 (v1,0, v0,0), (v0,0, v1,0).

Joining ρX(s, e) to C over two corresponding links yields a
required path.

Suppose thatp = 3. If (s = v2,0 and e = v2,1) or (e = v2,0

and s = v2,1) then letρX(s, e) be the path on row2 of length
k−1; otherwise, letρX(s, e) be the path on row2 not containing

the link (v2,0, v2, 1). Join ρX(s, e) to C over two corresponding
links and denote the resulting path byρ(s, e).

If (s = v2,0 and e = v2,1) or (e = v2,0 and s = v2,1)
then ρ(s, e) is as required. Otherwise, iteratively joinρ(s, e) to
appropriate links(v2,l, v2,l+1) over(v1,l, v1,l+1) so that the nodes
used on row2 do not already appear onρ(s, e). Links should be
replaced (by paths) so that if{s, e} is odd (resp. even) then every
node of row2 appears on the amended path (resp. except one).
The path so obtained is as required.

Case (d) The faulty link is (va,0, va+1,0), where1 ≤ a ≤ p − 3.

Sub-case (i) s ande lie on rows0, 1, . . . , a + 1.

By Case (c), there is a pathρA(s, e) in rt(0, a + 1) of length
(a + 2)k − ǫ. If a 6= p − 3 then letC be the hamiltonian cycle
Ea+2,0 of rt(a + 2, p − 1), and if a = p − 3 then letC be the
cycle induced by the nodes on rowp− 1. JoiningρA(s, e) andC

over two corresponding links yields a path as required.

Sub-case (ii) s lies on rows0, 1, . . . , a + 1 and e lies on rows
a + 2, a + 3, . . . , p − 1.

Suppose thata 6= p−3. Let the nodee′ on rowa+1 be such that
s 6= e′ and {s, e} = {s, e′}. By Case (c), there is a pathρ(s, e′)

in rt(0, a + 1) of length (a + 2)k − ǫ. Let s′ be the node on row
a + 2 adjacent toe′. By Lemma 2, there is a pathρX(s′, e) in
rt(a + 2, p − 1) of length (p − a − 2)k − 1. The path

ρA(s, e′), (e′, s′), ρX(s′, e)

is as required.
Suppose thata = p− 3. Let the nodee′ on row a + 1 be such

that e′ 6= s and e′ lies on a column adjacent to the column on
which e lies. By Case (c), there is a pathρ(s, e′) in rt(0, p − 2)

of length(p− 1)k− ǫ. Let s′ be the neighbour ofe′ on rowp− 1

and letρX(s′, e) be the path of lengthk − 1 on row p − 1. The
path

ρA(s, e′), (e′, s′), ρX(s′, e)

is as required.
Proposition 6: Consider the k-ary 2-cube Qk

2 where k ≥ 6 is
even and where 2 of the links are faulty. Let s and e be any two
distinct nodes. There is a path of length k2 − 1 (resp. k2 − 2)
from s to e if {s, e} is odd (resp. even).

Proof: W.l.o.g. we may assume that(v0,0, v1,0) is a faulty
link. Partition Qk

2 into rt(k − 1, 0) and rt(1, k − 2). As usual,
ǫ = 1 if {s, e} is odd, andǫ = 2 if {s, e} is even.

Case (a) Both s ande lie in rt(k − 1, 0).

By Proposition 5, there is a pathρA(s, e) in rt(k − 1, 0) of
length 2k − ǫ. Either there is a link ofρA(s, e) on row k − 1

that is not incident with any faulty link or there is a link of
ρA(s, e) on row0 that is not incident with any faulty link; w.l.o.g.
suppose that(vk−1,i, vk−1,i+1) is a link of ρA(s, e) such that
neither (vk−1,i, vk−2,i) nor (vk−1,i+1, vk−2,i+1) is faulty (the
alternative case is similar). By Proposition 5, there is a path
ρX(vk−2,i, vk−2,i+1) in rt(1, k − 2) of length (k − 2)k − 1. The
path obtained by joiningρA(s, e) to ρX(vk−2,i, vk−2,i+1) over
(vk−1,i, vk−1,i+1) is as required.

Case (b) s lies in rt(k − 1, 0) ande lies in rt(1, k − 2).

Let (vk−1,i, vk−2,i) be a healthy link such thats 6= vk−1,i, e 6=

vk−2,i and{s, vk−1,i} = {s, e}. By Proposition 5, there is a path
ρA(s, vk−1,i) in rt(k − 1, 0) of length2k − ǫ and there is a path
ρX(vk−2,i, e) in rt(1, k − 2) of length (k − 2)k − 1. The path

ρA(s, vk−1,i), (vk−1,i, vk−2,i), ρX(vk−2,i, e)
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is as required.
Finally, we deal with the case when there is one faulty node

and one faulty link.
Proposition 7: Consider the k-ary 2-cube Qk

2 where k ≥ 6 is
even and where there is a faulty node and a faulty link. Let s and
e be any two distinct, non-faulty nodes. There is a path of length
at least k2 − 3 (resp. k2 − 4) from s to e if {s, e} is odd (resp.
even).

Proof: W.l.o.g. we may assume that the faulty node isv0,0.
Moreover, we may assume that either the faulty link does not lie
in rt(0, 1) or the faulty link is(v0,0, v0,1) (again, by applying the
usual automorphisms). However, if the faulty link is(v0,0, v0,1)

then we can assume that there are no faulty links as the fact that
v0,0 is a faulty node means that the link(v0,0, v0,1) is never used.
Thus, we can assume that the faulty link does not lie inrt(0, 1).
As usual,ǫ = 1 if {s, e} is odd, andǫ = 2 if {s, e} is even.

Case (a) Both s ande lie in rt(0, 1).

By Lemma 1, there is a pathρA(s, e) in rt(0, 1) of length at least
2k − 2− ǫ. Either there is a link ofρA(s, e) on row 0 that is not
incident withv0,0 nor a faulty link, or there is a link ofρA(s, e)

on row 1 that is not incident with a faulty link. W.l.o.g. suppose
that v1,i, v1,i+1 is a link of ρA(s, e) that is not incident with a
faulty link (the alternative case is similar). By Proposition 5, there
is a pathρX(v2,i, v2,i+1) in rt(2, k − 1) of length (k − 2)k − 1.
The path obtained by joiningρA(s, e) to ρX(v2,i, v2,i+1) over
(v1,i, v1,i+1) is as required.

Case (b) s lies in rt(0, 1) ande lies in rt(2, k − 1).

Let v1,i be such thats 6= v1,i, (v1,i, v2,i) is healthy and{s, v1,i} =

{s, e}. By Lemma 1, there is a pathρA(s, v1,i) in rt(0, 1) of
length at least2k − 2 − ǫ. By Proposition 5, there is a path
ρX(v2,i, e) in rt(2, k − 1) of length (k − 2)k − 1. The path

ρX(s, v1,i), (v1,i, v2,i), ρX(v2,i, e)

is as required.
From Propositions 3, 4, 6 and 7, we obtain the base case for

our main result so long ask ≥ 6. However, whenk = 4 a
simple computer program (implementing an exhaustive search)
verifies that Propositions 3, 4, 6 and 7 all still hold (we leave this
verification as an exercise). Hence, we have the following result.

Theorem 8: Let k ≥ 4 be even. In a faulty k-ary 2-cube Qk
2 in

which the number of node faults fv and the number of link faults
fe are such that fv + fe ≤ 2, given any two healthy nodes s and
e of Qk

2 , there is a path from s to e of length at least k2−2fv −1

(resp. k2 − 2fv − 2) if the nodes s and e have different (resp. the
same) parities.

IV. T HE INDUCTIVE STEP

In this section, we complete the proof by induction of our
main theorem. The following lemma simplifies the situation
considerably.

Lemma 9: Let Qk
n have 2n − 2 faulty nodes and links, where

n ≥ 4. There exists a dimension d such that when we parti-
tion Qk

n over dimension d, the resulting k-ary (n − 1)-cubes
Qd,0, Qd,1, . . . , Qd,k−1 each contain at most 2n− 4 faulty nodes
and links.

Proof: Suppose as our induction hypothesis thatn ≥ 5 and
that the result holds forQk

n−1 (with 2n− 4 faults). LetQk
n have

2n−2 faults. PartitionQk
n over dimension1; if the resultingk-ary

(n− 1)-cubesQ1,0, Q1,1, . . . , Q1,k−1 are such that each contains

at most2n − 4 faults then we are done. So w.l.o.g. suppose that
Q1,0 contains2n − 2 or 2n − 3 faults.

Suppose thatQ1,0 contains2n−3 faults, and so there is exactly
1 fault not inQ1,0. Temporarily regard some fault,w, say, ofQ1,0

as healthy and apply the induction hypothesis toQ1,0 (note that
w might be a node or a link). Thus, there is a dimensiond such
that when we partitionQ1,0 over dimensiond, the resultingk-ary
(n − 2)-cubes each contain at most2n − 6 faults. Consequently,
when we partitionQk

n over dimensiond, each of the resultingk-
ary (n−1)-cubes contains at most2n−4 faults (the ‘temporarily
healthy fault’w needs to be recast as faulty, and there is1 other
fault not in Q1,0 to consider).

Suppose thatQ1,0 contains2n − 2 faults, and so there are no
faults outsideQ1,0. Temporarily regard2 faults, w and w′, say,
of Q1,0 as healthy and apply the induction hypothesis toQ1,0.
Thus, there is a dimensiond such that when we partitionQ1,0

over dimensiond, the resultingk-ary (n− 2)-cubes each contain
at most2n − 6 faults. Consequently, when we partitionQk

n over
dimensiond, each of the resultingk-ary (n − 1)-cubes contains
at most2n−4 faults (the2 ‘temporarily healthy faults’w andw′

need to be recast as faulty).
In order for the result to follow by induction, all we need to

do is to verify the statement of the lemma for whenn = 4. Let
the faults ofQk

4 be wi, for i = 1, 2, . . . , 6. Partition Qk
4 over

dimension1. Either each resultingk-ary 3-cube contains at most
4 faults, and we are done, or the nodes involved in at least5 of
{wi : i = 1, 2, . . . , 6} have identical first components (ifwi is a
link then the nodes involved inwi are the nodes of the link, and
if wi is a node then the node involved inwi is the node itself).
We may assume that it is the latter and that the5 faults whose
first components (of the nodes involved) are identical arew1, w2,
w3, w4 andw5.

Partition Qk
4 over dimension2. Either each resultingk-ary 3-

cube contains at most4 faults, and we are done, or one of the
resulting k-ary 3-cubes contains either5 or 6 faults. We may
assume that the second components ofw1, w2, w3 and w4 are
identical.

Partition Qk
4 over dimension3. Either each resultingk-ary 3-

cube contains at most4 faults, and we are done, or one of the
resulting k-ary 3-cubes contains either5 or 6 faults. We may
assume that the third components ofw1, w2 andw3 are identical.

Partition Qk
4 over dimension4. Either each resultingk-ary 3-

cube contains at most4 faults, and we are done, or one of the
resulting k-ary 3-cubes contains either5 or 6 faults. We may
assume that the fourth components ofw1 and w2 are identical.
This yields a contradiction as either:w1 and w2 are nodes and
w1 6= w2; or w1 or w2 is a link joining a node to itself. The result
follows.

Let us reexamine the proof of Lemma 9. Ideally we would like
Lemma 9 to apply whenn = 3 but the argument in the proof
fails. However, we can classify exactly the fault configurations
leading to failure.

Suppose thatQk
3 has 4 faulty nodes. Following through the

argument in the proof of Lemma 9 yields that, up to isomorphism,
the situations where the argument fails is when the4 faults are
of the form(0, 0, 0), (a, 0, 0), (0, b, 0) and(0, 0, c), for somea, b

andc all different from0.
Suppose thatQk

3 has3 faulty nodes and1 faulty link. W.l.o.g.
suppose that the faulty link lies in dimension1. Following the
argument in Lemma 9 yields that, up to isomorphism, the situa-
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tions where the argument fails is when the3 faulty nodes are of
the form(0, 0, 0), (0, b, 0) and(0, 0, c), for someb andc different
from 0, and the faulty link is of the form((a, 0, 0), (a + 1, 0, 0)),
for somea.

Suppose thatQk
3 has2 faulty nodes and2 faulty links. W.l.o.g.

suppose that one of the faulty links lies in dimension1 with
the other in dimension2 (the two links cannot lie in the same
dimension as otherwise we could partition over this dimension
and be done). Following the argument in Lemma 9 yields that,
up to isomorphism, the situations where the argument fails is
when the2 faulty nodes are of the form(0, 0, 0) and (0, 0, c),
for somec different from0, and the faulty links are of the form
((a, 0, 0), (a+1, 0, 0)) and((0, b, 0), (0, b+1, 0)), for somea and
b.

Suppose thatQk
3 has1 faulty node and3 faulty links. W.l.o.g.

suppose that one of the faulty links lies in dimension1, one in
dimension2 and one in dimension3. Following the argument in
Lemma 9 yields that, up to isomorphism, the situations where
the argument fails is when the faulty node is of the form(0, 0, 0)

and the faulty links are of the form((a, 0, 0), (a + 1, 0, 0)),
((0, b, 0), (0, b + 1, 0)) and ((0, 0, c), (0, 0, c + 1)), for somea, b

andc.
Suppose thatQk

3 has4 faulty links. In this case, Lemma 9 holds
as at least2 faulty links lie in the same dimension and we can
partition over this dimension. We shall use these observations in
the proof of the following theorem.

Throughout the rest of the paper, we adopt the following
notation. Suppose that we partitionQk

n over some dimension
d to get thek-ary (n − 1)-cubesQd,0, Qd,1, . . . , Qd,k−1. Let
x be a node ofQd,i, say. Then we refer to the node inQd,j

corresponding tox (that is, the node ofQd,j whose name is
identical to that ofx except that itsdth component isj as opposed
to i) asxj . We also refer to the nodex asxi.

Theorem 10: Let Qk
n be a k-ary n-cube, for some n ≥ 2 and

some even k ≥ 4, with fv faulty nodes and fe faulty links, where
0 ≤ fv + fe ≤ 2n − 2. If s and e are distinct healthy nodes and
{s, e} is odd (resp. even) then there exists a path from s to e of
length at least kn − 2fv − 1 (resp. kn − 2fv − 2).

Proof: We proceed by induction onn. The base case of the
induction is handled by Theorem 8. Suppose, as our induction
hypothesis, that the result holds forQk

m, wheren ≥ 3 and for
all m < n. Let Qk

n be ak-ary n-cube as in the statement of the
theorem. Throughout,ǫ = 1 if {s, e} is odd, andǫ = 2 if {s, e}

is even.
Suppose thatn ≥ 4. By Lemma 9, we may assume that when

we partitionQk
n over dimension1, the resultingk-ary (n − 1)-

cubesQ1,0, Q1,1, . . . , Q1,k−1 each contain at most2n− 4 faults.
Suppose that the number of faulty nodes inQ1,i is fi, for i =

0, 1, . . . , k − 1.

Case (a) s ande lie in Q1,0.

By the induction hypothesis, there is a pathρ0(s, e) in Q1,0 of
length at leastkn−1 − 2f0 − ǫ. Let (w0, z0) be a link ofρ0(s, e)

for which w1 and z1 are healthy nodes (ofQ1,1) and (w0, w1)

and(z0, z1) are healthy links (a simple counting argument shows
the existence of such a link). By the induction hypothesis, there
is a pathρ1(w1, z1) in Q1,1 of length at leastkn−1 − 2f1 − 1.
Let ρ(s, e) be the join ofρ0(s, e) to ρ1(w1, z1) over (w0, z0).
The pathρ(s, e) has length at least2kn−1 − 2(f0 + f1) − ǫ.
Proceeding similarly and iteratively with appropriate paths in

Q1,2, Q1,3, . . . , Q1,k−1 yields a path froms to e of the required
length.

Case (b) s lies in Q1,0 ande lies in Q1,a, for a 6= 0.

A simple counting argument yields that there exists a healthy node
w0 ∈ Q1,0 \ {e0} such that:{s, w0} is odd;wi is healthy, for all
i = 0, 1, . . . , k−1; and all links of{(wi, wi+1) : i = 0, 1, . . . , k−

2}∪{(wk−1, w0)} are healthy. By the induction hypothesis, there
exists a pathρ0(s, w0) in Q1,0 of length at leastkn−1 − 2f0 − 1.

Suppose thata 6= 1. A simple counting argument yields that
there exists a healthy nodez1 ∈ Q1,1 \ {e1} such that:{w1, z1}

is odd; zi is healthy, for alli = 0, 1, . . . , k − 1; and all links of
{(zi, zi+1) : i = 0, 1, . . . , k − 2} ∪ {(zk−1, z0)} are healthy. By
the induction hypothesis, there exists a pathρ1(w1, z1) in Q1,1

of length at leastkn−1 − 2f1 − 1. Denote the path

ρ0(s, w0), (w0, w1), ρ1(w1, z1)

by ρ(s, z1).

Suppose thata 6= 2. By the induction hypothesis, there exists a
pathρ2(z2, w2) in Q1,2 of length at leastkn−1−2f2−1. Denote
the path

ρ(s, z1), (z1, z2), ρ2(z2, w2)

by ρ(s, w2).

Proceeding iteratively in this way yields a pathρ(s, za−1)

or ρ(s, wa−1), depending upon whethera − 1 is odd or even,
respectively, of length at leastakn−1−2(f0+f1+. . .+fa−1)−1.
W.l.o.g., suppose that the path isρ(s, za−1) (the other case is
similar). The nodeza is odd if, and only if, the nodes is odd;
hence,{s, e} = {za, e}.

By the induction hypothesis, there exists a pathρa(za, e) in
Q1,a of length at leastkn−1 − 2fa − ǫ. Denote the path

ρ(s, za−1), (za−1, za), ρa(za, e)

by ρ′(s, e). The pathρ′(s, e) has length at least(a + 1)kn−1 −

2(f0 + f1 + . . . + fa) − ǫ.

A simple counting argument yields that there is a link(xa, ya)

of ρa(za, e) such thatxa+1 andya+1 are both healthy nodes and
(xa, xa+1) and(ya, ya+1) are both healthy links (to see this, note
thatρa(za, e) has length at leastkn−1−2fa−ǫ ≥ 22n−2−2(2n−

4)−2 = 22n−2 −4n+6, and so there are at least22n−3−2n+3

mutually disjoint links onρa(za, e); as there are at most2n − 2

faulty links in ourQk
n and22n−3−2n+3 > 2n−2, whenn ≥ 3,

at least one such link(xa, ya) of ρa(za, e) must be as required).
By the induction hypothesis, there is a pathρa+1(xa+1, ya+1) in
Q1,a+1 of length at leastkn−2fa+1−1. Form the path obtained
by joining ρ′(s, e) to ρa+1(xa+1, ya+1) over (xa, ya) and denote
this path byρ′′(s, e). The pathρ′′(s, e) has length at least(a +

2)kn−1 − 2(f0 + f1 + . . . + fa+1) − ǫ. Proceeding similarly and
iteratively in Q1,a+2, Q1,a+3, . . . , Q1,k−1 results in a path from
s to e of the required length (the construction can be visualized
as in Fig. 7).

11



s

w0

...

...

...

e

z1 za

w1

ya

xa
ya+1

xa+1

Q1,1Q1,0 Q1,a Q1,a+1 Q1,k-1

Figure 7. The construction in Case (b).

Now suppose thatn = 3 and suppose further that we have no
faulty links (we deal with when there are faulty links later). From
the observation following Lemma 9, we may assume that we have
4 faulty nodes and that these nodes are(0, 0, 0), (a, 0, 0), (0, b, 0)

and(0, 0, c), for somea, b andc all different from0; otherwise the
construction above in Cases (a) and (b) can be used to build our
path. PartitionQk

3 over dimension1 to obtain thek-ary 2-cubes
Q1,0, Q1,1, . . . , Q1,k−1; note that(0, 0, 0), (0, b, 0) and (0, 0, c)

lie in Q1,0.

Case (c) s ande lie in Q1,0.

Temporarily suppose that(0, 0, 0) is healthy. By Theorem 8, there
is a pathρ0(s, e) in Q1,0 of length at leastk2 − 4 − ǫ but upon
which (0, 0, 0) may lie. If (0, 0, 0) lies on ρ0(s, e) then choose
y0 = (0, 0, 0), otherwise choosey0 to be any node ofρ0(s, e)

different froms ande.
Let y−

0
and y+

0
be the nodes immediately before and after

y0, respectively, onρ0(s, e). W.l.o.g., we may suppose thaty−
k−1

andy+
1

are healthy nodes (and that(y−
0

, y−
k−1

) and(y+
0

, y+
1

) are
healthy links; recall, there is1 faulty node outsideQ1,0). A simple
counting argument yields that there exists a healthy nodewk−1 ∈

Qk−1 \{y
−

k−1
} such that{y−

k−1
, wk−1} is odd andwi is healthy,

for all i = 1, 2, . . . , k − 1 (and the links of{(wi, wi+1) : i =

0, 1, . . . , k−2} are healthy; to see this, note that there are at least
⌊(k2−1)/2⌋ healthy nodeswk−1 for which {y−

k−1
, wk−1} is odd,

and this number is greater than0). By Theorem 8, there exists a
pathρk−1(y

−

k−1
, wk−1) in Q1,k−1 of length at leastk2−2fk−1−

1.
A simple counting argument yields that there exists a healthy

node zk−2 ∈ Qk−2 \ {y+

k−2
, wk−2} such that{wk−2, zk−2} is

odd andzi is healthy, for alli = 1, 2, . . . , k − 1 (and the links
of {(zi, zi+1) : i = 0, 1, . . . , k − 3} are healthy). By Theorem 8,
there exists a pathρk−2(wk−2, zk−2) in Qk−2 of length at least
k2 − 2fk−2 − 1.

Proceeding iteratively in this way yields a pathρ′(s, z1) defined
as

ρ(s, y−0 ), (y−0 , y−k−1
), ρk−1(y

−

k−1
, wk−1), (wk−1, wk−2),

ρk−2(wk−2, zk−2), (zk−2, zk−3), . . . , (z2, z1).

By Theorem 8, there is a pathρ1(z1, y+
1

) in Q1,1 of length at
leastk2 − 2f1 − 2. Consider the pathρ′′(s, e) defined as

ρ′(s, z1), ρ1(z1, y+
1 ), (y+

1 , y+
0 ), ρ0(y

+
0 , e).

The length of this path isk3 − 2Σk−1

i=1
fi − 6 − ǫ = k3 − 8 − ǫ.

Hence, the pathρ′′(s, e) is as required (the construction can be
visualized as in Fig. 8).

s

......

e

z1

wk-1

y0

Q1,1Q1,0Q1,k-1Q1,k-2

y0
+

y0
-

yk-1
-

y1
+

zk-2

wk-2

Figure 8. The construction in Case (c).

Case (d) s lies in Q1,0 ande does not lie inQ1,0.

For the moment, regard the nodex0 = (0, 0, 0) as healthy. By
Theorem 8, there is a pathρ0(s, x0) in Q1,0 of length at least
k2 − 5, if {s, x0} is odd, andk2 − 6, if {s, x0} is even. Letw0

be the node ofρ0(s, x0) adjacent tox0. W.l.o.g. we may assume
w1 and (w0, w1) are healthy. There are two possibilities: either
e ∈ Q1,1 or e ∈ Q1,m, where0 6= m 6= 1.

Suppose thate ∈ Q1,1 and w1 = e. A simple counting
argument yields that there exists a link(y0, z0) of ρ0(s, w0) such
that y0 6= w0 6= z0 and y1, z1, (y0, y1) and (z0, z1) are healthy.
By Theorem 8, there is a pathρ1(y1, z1) in Q1,1 that avoidse
and is of length at leastk2−2(f1 +1)−1. Let ρ(s, e) be the path
obtained by joining

ρ0(s, w0), (w0, e)

to ρ1(y1, z1) over the link(y0, z0). As {s, x0} = {s, e}, the length
of ρ(s, e) is at least2k2 − 2f1 − 6 − ǫ.

Suppose thate ∈ Q1,1 andw1 6= e. By Theorem 8, there is a
pathρ1(w1, e) in Q1,1 of length at leastk2 − 2f1 − 1, if {w1, e}

is odd, andkn−1 − 2f1 − 2, if {w1, e} is even. Define the path
ρ(s, e) as

ρ0(s, w0), (w0, w1), ρ1(w1, e).

If {s, e} is odd then{s, x0} = {s, w1} 6= {w0, e} and the length
of ρ(s, e) is at least2k2−2f1−7. If {s, e} is even then{s, x0} =

{s, w1} = {w0, e} and the length ofρ(s, e) is at least2k2−2f1−8.
Hence, ife ∈ Q1,1 then we have a pathρ(s, e) in Q1,0 ∪ Q1,1

of length at least2k2 − 2f1 − 6 − ǫ (the constructions can be
visualized as in Fig. 9).

s

w0 w  = e1

Q1,1Q1,0

x0

z 0

y
0

z1

y1

s

w0

Q1,1Q1,0

x0

e

w      e1=/

Figure 9. The constructions in Case (d) whene ∈ Q1,1.

A simple counting argument yields that there is a link(u1, v1)

of ρ(s, e) such that(u1, u2) and (v1, v2) are both healthy. By
Theorem 8, there is a pathρ2(u2, v2) in Q1,2 of length at
leastk2 − 2f2 − 1. Join the pathρ(s, e) to the pathρ2(u2, v2)
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over the link (u1, v1) and denote the resulting path byρ(s, e)

also. Proceeding iteratively in this way inQ1,3, Q1,4, . . . , Q1,k−1

yields a pathρ(s, e) whose length is at leastk3−2Σk−1

i=1
fi−6−ǫ =

k3 − 8 − ǫ. Hence, the pathρ(s, e) is as required.
Alternatively, suppose thate ∈ Q1,m where0 6= m 6= 1. Let

y1 ∈ Q1,1 be such that:{s, y1} is odd; ym 6= e; and yi is
healthy, for i = 1, 2, . . . , k − 1 (and the links of{(yi, yi+1) :

i = 1, 2, . . . , k−2} are healthy). By the construction above, there
is a pathρ′(s, y1) in Q1,0 ∪ Q1,1 of length2k2 − 2f1 − 7.

Suppose thatm 6= 2. Let z2 ∈ Q1,2 be such that:{z2, y2} is
odd;za 6= e; andzi is healthy, fori = 1, 2, . . . , k−1 (and the links
of {(zi, zi+1) : i = 2, 3, . . . , k − 2} are healthy). By Theorem 8,
there is a pathρ2(y2, z2) in Q1,2 of lengthk2 − 2f2 − 1.

Suppose thatm 6= 3. By Theorem 8, there is a path
ρ3(z3, y3) in Q1,3 of length k2 − 2f3 − 1. Proceeding in this
way, we obtain pathsρ2(y2, z2), ρ3(z3, y3), . . . , and so on until
ρm−1(ym−1, zm−1), if m is odd, orρm−1(zm−1, ym−1), if m

is even. Applying Theorem 8 again yields a pathρm(zm, e)

or ρm(ym, e) in Q1,m, depending upon whetherm is odd or
even, respectively. Ifm is odd (resp. even) thenρm(zm, e) (resp.
ρm(ym, e)) has length at leastk2 − 2fm − 1 if {zm, e} (resp.
{ym, e}) is odd, andk2 − 2fm − 2 if {zm, e} (resp.{ym, e}) is
even.

If m is odd then letρ(s, e) be defined as

ρ′(s, y1), (y1, y2), ρ2(y2, z2), (z2, z3), ρ3(z3, y3), . . . , (zm−1,

zm), ρm(zm, e),

and if m is even then letρ(s, e) be defined as

ρ′(s, y1), (y1, y2), ρ2(y2, z2), (z2, z3), ρ3(z3, y3), . . . , (ym−1,

ym), ρm(ym, e).

It can easily be verified that ifm is odd then{s, e} = {zm, e},
and if m is even then{s, e} = {ym, e}. Thus, the length of the
pathρ(s, e) is at least(m+1)k2 − 2Σm

i=1fi − 6− ǫ. If m 6= k− 1

then the pathρ(s, e) can be iteratively joined to a path inQ1,i

of length k2 − 2fi − 1, for i = m + 1, m + 2, . . . , k − 1, just as
we did above, to obtain a path, also denotedρ(s, e), of length at
leastk3−2Σk−1

i=1
fi−6− ǫ. Hence, our pathρ(s, e) is as required.

Case (e) s ande lie in Q1,p andQ1,m, respectively, wherem 6=

0 6= p 6= m.

W.l.o.g. suppose thatp > m. Let s′ ∈ Q1,0 be such thats′, s′k−1

and(s′k−1, s′) are healthy and{s′, s} is odd. By the construction
in Case (d), above, there is a pathρ′(s′, e) in Q1,0 ∪Q1,1 ∪ . . .∪

Q1,m of length at least(m + 1)k2 − 2Σa
i=0fi − 7.

Let wp be a node ofQp such that:{s, wp} is odd; w0 6= s′;
and wi is healthy, fori = p, p + 1, . . . , k − 1 (and the links of
{(wi, wi+1) : i = p, p+1, . . . , k−2} are healthy). By Theorem 8,
there is a pathρp(s, wp) in Q1,p of length at leastk2 − 2fp − 1.

Let yp+1 be a node ofQ1,p+1 such that:{wp+1, yp+1} is odd;
y0 6= s′; andyi is healthy, fori = p + 1, p + 2 . . . , k − 1 (and the
links of {(yi, yi+1) : i = p + 1, p + 2, . . . , k − 2} are healthy). By
Theorem 8, there is a pathρp+1(wp+1, yp+1) in Qp+1 of length
at leastk2 − 2fp+1 − 1.

Again, by Theorem 8, there are pathsρp+2(yp+2, wp+2),
ρp+3(wp+3, yp+3), and so on, up toρk−2(yk−2, wk−2), if p

is even, andρk−2(wk−2, yk−2), if p is odd, of lengthsk2 −

2fp+2 − 1, k2 − 2fp+3 − 1, . . . , k2 − 2fk−2 − 1, respectively;
note that{s, e} = {wk−1, s′k−1}, if p is odd (resp.{s, e} =

{yk−1, s′k−1}, if p is even). Yet again, by Theorem 8, there is

a pathρk−1(wk−1, s′k−1) (resp.ρk−1(yk−1, s′k−1)) in Qk−1 of
length at leastk2−2fk−1− ǫ, if p is even (resp. odd). Letρ(s, e)

be the path

ρp(s, wp), (wp, wp+1), ρp+1(wp+1, yp+1), (yp+1, yp+2),

ρp+2(yp+2, wp+2), . . . . . . , (s
′

k−1, s′), ρ′(s′, e).

The pathρ(s, e) has length at least(k−p+m−1)k2−2Σm
i=0fi−

2Σk−1

i=p fi − 2 − ǫ.
If p 6= m+1 then the pathρ(s, e) can be iteratively joined to a

path inQ1,i of lengthk2−2fi−1, for i = m+1, m+2, . . . , p−1,
just as we did in Case(d), to obtain a path, also denotedρ(s, e),
of length at leastk3 − 2Σk−1

i=1
fi − 6 − ǫ. Hence, our pathρ(s, e)

is as required.

Case (f ) s ande lie in Q1,m wherem 6= 0.

By Theorem 8, there is a pathρm(s, e) in Q1,m of length at
least k2 − 2fm − ǫ. There exists a link(wm, ym) of ρm(s, e)

such thatwm+1, ym+1, (wm, wm+1) and(ym, ym+1) are healthy.
By Theorem 8, there exists a pathρm+1(wm+1, ym+1) in
Q1,m+1 of length at leastk2 − 2fm+1 − 1. Join ρm(s, e) to
ρm+1(wm+1, ym+1) over (wm, ym) and denote this path by
ρ(s, e) also. The pathρ(s, e) can be iteratively joined to a path
in Q1,i of lengthk2 − 2fi − 1, for i = m + 2, m + 3, . . . , m − 1

to obtain a path of length at leastk3 − 8 − ǫ as required.

Now suppose that we have1 faulty link. Partition over the
dimension containing this faulty link and if each resultingk-ary2-
cubeQ1,0, Q1,1, . . . , Q1,k−1 contains at most2 faults then apply
the construction as in Cases (a) and (b) to build our path. Hence,
we may assume thatQ1,0 contains3 faulty nodes. However, if we
follow exactly the constructions in each of Case (c), (d), (e) and
(f ), then these constructions still apply and we obtain a path of
the required length. Exactly the same can be said of the scenarios
when we have2 and3 faulty links. The result now follows.

We note that givenQk
n, wherek ≥ 4 is even, andfn and fe,

where fn + fe ≤ 2n − 2, there are configurations offn faulty
nodes,fe faulty links and pairs of distinct, healthy nodes so that
the longest path joining the two nodes has length exactlykn −

2fn − 1 (resp.kn − 2fn − 2) if the parities of the two nodes are
different (resp. the same). Hence, in this sense our result can be
viewed as optimal.

Also, there are configurations of2n−1 faulty nodes inQk
n and

pairs of healthy nodes such that the longest path joining thetwo
nodes has length1; take healthy, adjacent nodesx and y where
all other neighbours ofx are faulty. Hence, the total number of
faults in Theorem 10 cannot be increased.

V. CONCLUSIONS

Theorem 10, allied with the result in [22], fully resolves the
situation as regards the existence of longest cycles ink-ary n-
cubes where the total number of faults (nodes and links) is at
most2n−2 and where the faults are configured in a ‘worst case’
scenario with respect to the pair of nodes in question. Of course,
there are configurations of, for example,2n−2 faulty nodes inQk

n

where certain pairs of nodes have paths joining them of lengths
strictly greater than the bounds stated in Theorem 10. It would
be interesting to build longest paths joining pairs of nodesbut
taking into account the configuration of faults (though thiswould
appear to be a demanding task).

We expect that if we assume the conditional fault assumption
then we should be able to tolerate more faults yet still prove
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a result analogous to Theorem 10. It would be worthwhile to
investigate this scenario and we conjecture that the path lengths
will be exactly as in Theorem 10.

The existence of paths and cycles in (faulty) interconnection
networks does not guarantee that we can efficiently construct
these paths and cycles using a distributed algorithm implemented
on the underlying topology (see [21] as regards the issues involved
with the distributed embedding of a Hamiltonian cycle in a faulty
k-ary n-cube). The existence of an efficient distributed algorithm
which ‘implements’ Theorem 10 should be investigated.
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