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Abstract—Let k > 4 be even and letn > 2. Consider a faulty be able to tolerate small numbers of faults and still be ablese
k-ary n-cube Q, in which the number of node faults f, and the  our parallel machine. A key property we would like our ‘falt
number of link faults fe are such that f, +f. < 2n—2. We prove  machine to have is that a large number of the healthy processo
that given any two healthy nodess and e of Q,., there is a path g4 remain in a connected component and be able to ukeerta

from s to e of length at leastk™ — 2f, — 1 (resp. k" — 2f, — 2) L . - .
if the nodes s and e have different (resp. the same) parities (the significant parallel computations. Numerous existing atgms

parity of a node in Q¥ is the sum modulo2 of the elements in for k-ary n-cubes utilize orderings of processors and involve the
the n-tuple over {0,1,...,k — 1} representing the node). Our use of long paths and cycles (note that a path in a multi-port
result is optimal in the sense that there are pairs of nodes and bi-directional network results in a closed path containthg
fault configurations for which these bounds cannot be improved, npodes of the path exactly twice) and we would wish to utilize
and it answers questions recently posed by Yang, Tan and Hsu, g,c;y structures even in the presence of faults. Also, fuedéah
and by Fu. Furthermore, we extend known results, obtained by . . . .
Kim and Park. for the case whenn — 2 and abundant in parallel computing are linear arrays angsrin
’ ' of processors, and at the very least our faulty machine ghoul
Index Terms—interconnection networks, k-ary n-cubes, fault-  pe aple to simulate (the large number of) algorithms designe
tolerance, embeddings, longest paths. for machines whose processors are joined in the form of finea
arrays or rings (see, for example, [2], [16]). We remark that
|. INTRODUCTION situation is of a different nature to that where a faulty ratnis
The choice of how we connect the processors in a distributed- simulate another (healthy) network but where this sitoma
memory parallel machine is a fundamental design decisibard’ comes about due to an embedding of the healthy network in the
are numerous, often conflicting considerations to bear indmi faulty network with low load, congestion and/or dilatioru¢h a
For instance, we would like our interconnection topologybts scenario can be found in, for example, [1], [8], [12], [17]av&
symmetric, have small diameter, be recursively decompesbb hypercubes, arrays and butterflies are considered).
highly connected, be regular of low degree, support rapibesasy In this paper we continue the study of theary n-cube with
inter-processor communication, support the simulatiorothier regard to the existence of long paths and cycles in the pcesen
machines based on other topologies, and so on. There doesafdimited numbers of node and link faults. We are motivated
exist an interconnection topology which is optimal on at@ants by the work in four recent publications. In [15], Kim and Park
and trade-offs generally have to be made. study the existence of hamiltonian paths in two-dimenditora
An extremely popular interconnection topology is the hyThey provide conditions when a two-dimensional torus with a
percube. The hypercube has been used as the interconneatimst2 faulty nodes is hamiltonian, hamiltonian-connected and bi
topology of a number of distributed memory multiprocessorfamiltonian-connected. In [11], Fu proves thatradimensional
such as the Cosmic Cube [19], the Ametek S/14 [4], the iPS@percube withf < n—2 faulty nodes is such that there is a path
[9], [10], the Ncube [5], [10] and the CM-200 [6], and theof length at least™ — 2f — ¢ between any two distinct, healthy
properties of hypercubes relevant to parallel computingliseen nodes, where = 1 if the two nodes have different parities and
well studied. One drawback of the hypercube is that as the= 2 otherwise. In [13], Hsieh and Chang show that Fu’s result
dimension of a hypercube increases, so does the degree ofiifds even wherf < 2n—5 but only so long as every healthy node
nodes. Consequently, given a collection of processorseifwsh is adjacent to at least healthy nodes (the so-called conditional
to connect these processors in the topology of a hypercudre tHiault assumption). In [22], Yang, Tan and Hsu proved that in a
we have no choice as to the degree of the nodes of the resultingry n-cube wherek is odd, if the number of faulty nodes and
network. Thek-ary n-cube has been proposed as an alternatilieks is at mostn —3 then there is a hamiltonian cycle, and if the
to the hypercube. The-ary n-cube is very ‘hypercube-like’ and number of faulty nodes and links is at ma@st — 2 then there is
has similar properties to the hypercube. Furthermore, e ta hamiltonian path joining any two, distinct healthy noddste
parameters availablg; and n, allow us to regulate the degreethat Yang, Tan and Hsu prove no results wlieis even beyond
of the nodes yet still incorporate large numbers of proasssoremarking that wherk is even, thek-ary n-cube is bipartite and
although usually at a cost to some other property such as #wif there isl faulty node then there can be no hamiltonian cycle
diameter or the connectivity. A number of distributed meynorand there exists a pair of distinct, healthy nodes not joingc
multiprocessors have been built withkaary n-cube forming the hamiltonian path.
underlying topology, such as the Mosaic [20], the IWARP {fig Our main result is as follows. Lét > 4 be even and let > 2.
J-machine [18], the Cray T3D [14] and the Cray T3E [3]. In a faulty k-ary n-cube @~ in which the number of node faults
As more and more processors are incorporated into paralfgl and the number of link faultg. are such thaf,, + fe < 2n—2,
machines, faults become more common, be it faults in the pmgiven any two healthy nodesande of QF, there is a path from
cessors themselves or faults on the inter-processor ctiongc s to e of length at least™ — 2f,, — 1 (resp.k™ — 2f, — 2) if the
Given the significant cost of parallel machines, we wouldgare®  nodess ande have different (resp. the same) parities. Our result:



resolves the situation in [22] whenis even; answers questionsas to obtain a new path fromto v of lengthl+1’+1, as thegjoin
posed by Yang, Tan and Hsu, and by Fu; and extends knowhp(u,v) to p’(x;11,y:+1) OVer (x;,y;). We can equally well
results, obtained by Kim and Park, for the case when 2. The join two paths over a sub-path rather than a link; with thevabo
rest of this paper is devoted to a proof by induction of ourrmanotation, we would remove a sub-patfx;,y;) from p(u, v) and
theorem. Section Il contains the basic definitions. In ®ectil, replace it with the patltx;, x;11), p (Xit1, Yit1), (Vie1, ¥i). We

we deal with the base case of the induction, and in Section IWave analogous constructions should we wish to join: a cyete
we deal with the inductive step. We present our conclusions & path, to obtain a path; or two cycles, to obtain a cycle (when
Section V. joining a cycle, we lose one edge from the cycle).

Henceforth, for reasons of clarity, we drop the use of bold
[I. BASIC DEFINITIONS type to denote nodes @p” (hitherto, we have used bold type to
The k-ary n-cube QE, for k > 3 andn > 2, hask™ nodes €mphasize the representation of nodes as tuples of elements
indexed by{0, 1,...,k—1}", and there is a link(u1, ua, ..., un),
(v1,ve,...,vy)) if, and only if, there existd € {1,2,...,n} such
that min{|ug — vql, k — |ug — vq|} = 1, andwu; = v;, for every
i€ {1,2,...,n}\ {d}. Many structural properties of-ary n- IIl. THE BASE CASE
cubes are known, but of particular relevance for us is thiatay

n-cube is node-symmetric; that is, given any two distinctewd In this section, we deal with the base case of our forthcoming

/ k . . k .
M a?d v’ of Qp, there is an automorpr.n.sm ap,, mapping v inductive proof of the main result, namely when we haveary
to v'. Throughout, we assume that addition on tuple elements_js . A .
modulo k. 2-cup§ with no more thap faqlts. We begln with some notation
An indexd € {1,2 n} is often referred to as dimension specific to our constructions in this section.
) P . - k . - .
We canpartition Q% over dimension d by fixing thedth element ~ We consider; as ak x k grid with wrap-around and we think
of any node tuple at some valuefor everyw € {0, 1,...,k—1}. ©f @ nodev; ; as indexed by itsow i and column j. Given two
This results ink copiesQq.0,Qa.1,- -, Qae—1 Of QE_, (with TOW |nd|cesw'e {0,1,...,k =1}, Whege.g # 1, we define the
Q4. Obtained to fixing theith element ab), with corresponding OW-torus rt(i, j) to be the subgraph ap; induced by the nodes

nodes iNQu.0, Qa1 - - -» Qax—1 joined in a cycle of lengttk (in on rowss,i+1,..., j, if i < j, or rowsi,z'+1,...,k—l,o,.:.,j,
dimensiond). Such a partition proves to be extremely useful (iff J < i but with all column links between nodes on rgvand
proofs by induction, as we shall see). nodes on row; removed ifi = j+ 1 or (i =0 andj = k — 1).

The parity of a nodev = (v1,vs, . ..,vn) of QF is defined to Throughout, we assume that addition on row or column indices

be 32", v; modulo2. We speak of a node as beingd or even IS modulok.
according to whether its parity is odd or even. A pair of nodes We define the following paths in the row-torug0, 1) (of some
{v,v'} is odd (resp.even) if v andv’ have different (resp. the Q5). The names of these paths are derived from the shape of their
same) parities. pictorial representations (see the figures coming up).,Also= 0

We write paths inQ% as sequences of incident links, and whetheni = 1, and ifi = 1 theni = 0.
k is even, paths necessarily consist of links joining, atiéwely,
odd and even nodes. We often refer to a pathp@s v); the Cf{t(vi,j,v;j) = (i igr1)s Vi1 Vige2)s- - Wim—1,
notation denotes that this is a path joining nad@nd nodev.
On occasion we might refer to a linfk,y) as appearing on a Viim)s (Vi,ms V7 )5 (V7 s V3 1)

path p(u,v), or equivalently the path(u,v) as containing the (V19 Vgm—2)s -5 (V5 541507 5)

link (x,y); when we do, the notation denotes that if we traverse where0 <i<1,0<j<k—-1,0<m<
_the pat_hp(u, v) starting at nodea then we shgll reach node k—1andm # j.

immediately before we reach noge If p(u,v) is a path andk Cowi o) = (visvii 1) (s ) (01
andy are nodes on this path therix,y) denotes the sub-path ~™\Vid> Vi) = \Wig Vig—1)s Wij—1:Vi,j=2) - - Wi,m- 1,
of p(u,v) starting atx and ending ay. Vi,m); (Vi,ms V7 )s (V7 1 V7 1)

_ A fault in Q% re_fers toa faulty node or a fa_ulty_ Iin_k. If a_node (Vi 1 Vimr2)s - (V71507 5)

is faulty then we imagine that the node and its incident lidks where0 <i<1,0<j<k-1,0<m<

not exist; if a link is faulty then we imagine that this link e®
not exist. When we refer to a path in a faulyf;, we mean that
all nodes and links on the path should be non-faulty, healthy vV (v, i) = (Uz‘,j>”z,j)v (vi,jv ”E,j+1)7 (U%,j+1>”i,j+1)v
(unless otherwise stated). (Vi j+1,vi,j+2), (Vi j+2, v;7j+2), (Ug,j+2,
We repeatedly apply the following construction throughout
Suppose that we have partitioned:ary n-cube Q% over some
dimensiond so as to obtairk-ary (n — 1)-cubesQq o, Q4,1 - -» § o
Qa.x—1 and that we have a patifu, v) in Q% of lengthi. Suppose #Jj <k-—1land|j—j]Iis even
also that(x;,y;) is a Iin!< of p(u, v), with x;, y; G/Qd,l_', and that N7 (v j,v;,5) = (vi’j,v;,j), (v;j, vij_l), (U;j_pvi,j—l),
we have another pathf(x;11,yi+1) of length’ which shares (Vi,j—1,vi,j—2), (Vi,j—2,07 ;_5), (V7 j_o»
no nodes in common witp(u, v), wherex; ;1 andy;; are the ’ ’
neighbours of; andy;, respectively, inQq ;.. We refer to the "’E,j—B)v (”i,j_gvvi,j—z%% (vi,j—3,0ij—a)
path obtained by removing the linf;, y;) from p(u,v) and re- cos (0 grg,vi ) where0 < i <1,0 <
placing it with the path(x;, x;+1), o' (Xit1,¥it1), (Yit1,¥i), SO i #j<k—1and|j—;j| is even

k—1andm # j.

V7 43)s (V7 jy3 Vi j+3), (Vi j+3, Vi ja),
ey (Ui’j/,l,vi’j/) WhereO S 7 S 1,0 S _]



Z+(Ui’j,1}i7j/) = (vi,ij+1), (Uz‘,j+17vg,j+1)’ (Qﬁi,j-&-l’ 6 Q ¢ .S Q .e Q rj
U7 j42)s (V7 400 Vi), (Vij42, Vi 43), @
(Vi j+3, vf,j+3)v (v;7j+3,vg?j+4), (v;’j+47 © 9 9, O O O () Q
vi7j+4),...,(v;,j,,vi)j/) where( < i < ° ay ~ ) 2\ O e\ 0
1,1<j#j <k-—1and|j—j'| is even ) s .

7" (vig,vig) = (Vigvig-1), (Vij—1,7 ;1) (V7 1, —oO O .S O O O o)
V7 j_2)s (V7 j_2,Vij—2), (Vij—2,vij—3), @1,
(vij—3,v7 5 3) (v 53, V7 5 a)s (V75 45 S ~ ~ O O O O 9
Vij—4),- -, (V7 s, v;,5,) Where0 <i < ° = O O — = = o)
1,1<j #j<k—1and|j—j'|is even @

In addition, we defineC} (v;j,v;;) = Cj(vij,v;;) = ps O () .e O=—-=0—-™(]

(vi,j,v; ;)- We also use the above motation fo describe paths in
other row-tori of the formrt(l,1 + 1) in Q. Furthermore, if we
write, for exampleN*(vL%vi,jH), Z™ (v4,5,v4,7) or some other
illegal node-pairing then we regard the path so denoted g be
the empty path.
We begin with two lemmas, the first concerning paths in a v0,5+1), (V0,5+1,v0,5) Ciy1 (V0,5 v1,5)-
row-toru_srt(o, 1) in_ which there is a faulty qode, _and the secong,ig path has lengthk — 2 and is as depicted in Fig. d
concerning paths in a row-torusg(0,p — 1) in which there are
no faults. These two lemmas are used repeatedly in the poofs SUPPOSE now thatande are both even. W.l.0.g. there are three
the subsequent propositions, each of which deals with aifgpect3S€S:
configuration of faults relating to the base case. Case €) s ande both lie on row0 with s = vy ;, e = vp; and
Lemma 1: Let £ > 4 be even and consider the row-torus i < j. Consider the path
rt(0,1) in Q% where 1 node of the row-torus is faulty. If the pair
of distinct, healthy nodes {s,e} of the row-torus is odd (resp.

Figure 1. Casesaj-(d) whenk = 8.

N (v1,4,v1,0), (v1,0,v1,k=1)s N (V1 6—1,v1,541), (V1,541,

Cf_l(vo,i, v1,4), 2 (v1,4,v1,2), (v1,2,v1,1), (v1,1,v1,0), (1,0,

even) then there is a path p(s, e) in the row-torus joining s and V1k-1)s N (V1,k—1,V1,541)s (V1,415 00,5+1)5 (V0,541
e of length at least 2k — 3 (resp. 2k — 4). v0,5)-
Proof: By the symmetric properties of the row-toreig0, 1), _ ' o _ )

Suppose that ande are both odd. W.l.0.g. there are four casedid. 1@).
(Throughout, we proceed by a case-by-case analysis, @fm@ Case {) s ande lie on different rows withs = vy ;, e = v1 ; and
some cases by applying automorphismsrib), 1) such as “re- i < j. Consider the path
flections in the vertical bisecting plane” or “toroidal rtotams”.)

+ —
Case §) s ande both lie on row0 with s = vg ;, e = v ; and 5-1(00, V1), 27 (V1,6 01,2), (1,2, v1,0), (v1,1,v1,0), (V10
- Al - 5]

i < j. Consider the path v1k-1), N (v1,k—1,01,5)-
Cﬁl(vomm,m Z™ (v1,5,v1,1), (V1,1,01,0), (V1,0, V1 k—1)s 'llz'_his f(g;h has lengthk — 4 and is similar to the path depicted in
_ ig. .
N7 (v1,—1,v1,5), (v1,5,v0,5)- g ) )
. . ] o Case () s ande both lie on rowl with s = vy ;, e = vy ; and
This path has lengthk — 2 and is as depicted in Fig. d) i < j. Consider the path

Case b) s ande lie on different rows withs = vg ;, e = v ; and _ _
i < j. Consider the path N~ (v1,4,v1,1), (v1,1,v1,0), (v1,0,01,6—1), N (v1,k—1,v1,5+2),

_ V1,42,0,542), (V0,j42,v0,j41), (v0,j+1,v0,5), Ci11 (vo,j
Cj_1(U0,i7U1,i)»Z (v1,4,v1,1), (v1,1,v1,0), (v1,0, V1 k—1)s (1.542,00,52), (40,52, 00,5:1), (40,541,005, Ciga (v0.5,

- Ul,j)-
N~ (vi,k—1,v1,541), (V1,j41,v0,54+1), (Vo j+1,v0,5), _ o . )
(W01, v1 ;) This path has lengthk — 4 and is similar to the path depicted in
03071 Fig. 1().
This path has lengthk — 2 and is as depicted in Fig. ) Suppose now that one efande is odd and one is even, and,
Case €) s ande lie on different rows withs = vg ; ande = v1,9.  further, thats ande lie on the same row. W.l.0.g. there are three
Consider the path cases.
Cii_1(v0,i,v1,4), 27 (v143,v1,1), (v1,1,01,0). Case f) s ande both lie on row0 with s = vy ; odd, e = vy ;

. ) . o even and: < j. Consider the path
This path has lengthkt — 2 and is as depicted in Fig. d)(

+ -
Case @) s ande both lie on rowl with s = vy ;, e = vy ; and  Ci-1(00.601,0), 27 (v, v1,0), (v1,1,01,0), (V10,01 k1),
1< J. Consider the path Ni(v17k7171}17j+1)7 (Ul,j+1a1}07j+1)7 (UO,j+17UO,j)-



This path has lengtbk — 3 and is as depicted in Fig. 12
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Figure 2. Caseshj-(j) whenk = 8.

Case () s ande both lie on rowl with s = vy ; odd, e = vy ;
even and) # i < j. Consider the path

Cjt1(vl,i,vo,z‘)727(00,17’!}0,2), (v0,2,v0,1), (vo,1,v1,1), (V1,15
v1,0), (v1,0,V1,k—1)s N~ (V1,k—1,v1,5)-
This path has lengthkt — 3 and is as depicted in Fig. i2(

Case ) s ande both lie on rowl with s = v1 o ande = vy ;
even. Consider the path

(v1,0,V1,6—1), N~ (1, k—1,v1,542), (V1 j+2,v0,j+2), (Vo j+2,

v0,5+1), (V0,j4+1,v0,5), C1 (vo,5,v1,5)

This path has lengthk — 3 and is as depicted in Fig. j2(

Suppose now that one efande is odd and one is even, and,

6 O O . O \/ O f'j
(k) N .

o= (e )—— Qe )———()

b O N 5) N O) N rj
0) i

OO O—O—O—O—)

° O O O O O ')
(m) ’ .

E—O0—0—0—0—0—0—4

00— 0—0O—O0—O0O—00—0
o |, ’

—O0—O0—0—0—0—0—3

6 N 2\ I\ O I\ 5) O
©) .

Figure 3. Caseskj-(0) whenk = 8.

This path has lengtbk — 3 and is as depicted in Fig. 13§.
Case () s and e lie on different rows withs = vy ; even and
e = v1,0. Consider the path

C;'r_1(vo,iwl,i)7Z_(U1,iyv1,2)7 (v1,2,v1,1), (v1,1,v1,0)-
This path has lengthk — 3 and is as depicted in Fig. 13\

Case ) s ande lie on different rows withs = vg ; even,e = vy ;
odd. Consider the path

Z™ (vo,i,v0,2), (v0,2,v0,1), (v0,1,v1,1), (v1,1,v1,0), (v1,0,

V1 k—1)s N~ (V1 k—1,01,5+1), (V1,j41,01,5)-

further, thats ande lie on different rows. W.l.0.g. there are fivepg path has lengthk — 3 and is as depicted in Fig. 8

cases.

Case k) s lies on row0 ande lies on row1 with s = v ; odd,
e =1 ; even and < j. Consider the path

C]—'i__1('007ia'Ul,i)7Z_(Ul,iavl,1)7 (v1,1,v1,0), (v1,0,V1,k—1),
N~ (v1,—1,v1,5)-
This path has lengtbk — 3 and is as depicted in Fig. B(

Case () s ande lie on different rows withs = vy ; odd,e = vy ;
even and; # 1. Consider the path

Z (v0,i,v0,3), (v0,3,v0,2), (vo,2,v1,2), (v1,2,v1,1), (v1,1,v1,0),

(v1,0,v1,6—1), N~ (V1 k—1,v1,5)-
This path has lengthk — 3 and is as depicted in Fig. I3(
Case In) s ande lie on different rows withs = v ; even,e = vy ;

odd andi < j. Consider the path

C;r_l(vo,i, v1,), 2 (v1,4,v1,2), (v1,2,v1,1), (v1,1,v1,0), (v1,0,
V1 k—1) N~ (V1 k—1,01,541), (V1,j41,0,+41), (V0,j+1,

v0,5), (V0,5,v1,5)-

The result follows. [ |
The following lemma proves to be useful throughout.
Lemma 2. Let k¥ > 4 be even and consider the row-torus

rt(0,p — 1) in Q5 where 2 < p < k. If the pair of distinct nodes

{s, e} of the row-torus is odd (resp. even) then there is a path

p(s,e) in the row-torus joining s and e of length pk — 1 (resp.

pk — 2).

Proof: We proceed by induction op. Suppose thap = 2
and consider the row-torug(0,1). W.l.o.g. we may assume that
€ = 70,0

Suppose that = vg; is odd. The path

i L (s,v1.4), Z7 (v1,4,v1.1), (V1,1,v1,0), (v1,0, €)

has lengthek — 1.
Suppose that = vg; is even. The path

Ci (5,010, 27 (v1i—2,v1,2), (v1,2,01,1), (v1,1,1,0), (v1,0, €)

has lengthek — 2.
Suppose that = vy ; is odd. The path

Ci 1 (8,v0,4), Z (vo,4,€)

has lengthek — 1.
Suppose that = vy ; is even. The path

O (5,v0,4), Z~ (v0,i,v0,1), (v0,1, €)



has length2k — 2. So the result holds fop = 2.

Suppose, as our induction hypothesis, that the result Holds
all p such thatl < p < ¢, wherel < ¢ < k—1. Considerrt(0, q).
Case §) It is not the case that lies on row0 ande lies on row
q, and it is not the case thatlies on rowq ande lies on row0.
W.l.o.g. assume that ande lie in r£(0,q — 1). By the induction
hypothesis, there is a path(s,e) in rt(0,q — 1) of length
gk — 1 (resp.gk — 2) if {s,e} is odd (resp. even). A simple
counting argument yields that the patfs, e) must contain a link
(Vg—1,isVg—1,i+1) lying on row g — 1. Consider the path

p(8,v9-1,i)s (Vg—1,i,Vq,i)s (Vg,i> Vg i—1)s (Vg im1:Vq,i—2), - - -
(Vq,i+25Vq,i+1)s (Vg it1,Vg—1,i4+1)s P(Vg—1,i+1, €)-

This path is as required (with reference to our constructien
detailed at the beginning of this section, an alternativecdption
of this path would be as that obtained by joinipgs, e) to the
cycle

(04,05 vg,1)s (Vg,1,V¢,2)5 - -+ (Vg k=25 Vg,k—1)s (Vg,k—15Vq,0)
over the links(vy—1,i,v4—1,i+1) and (vq,i, vq,i+1))-
Case ) The nodes lies on row0 and the node: lies on rowg.
If e =v,, then definee’ = v,_; ;1. Note thate is odd if, and

@ 1 )
.f() .fO
I b ' )
@ 1y [ 1)
X
O b )
@ 1y [ 1)
(
“( b et D
), U @ )
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Figure 4. Partitioned)s’s.

Throughout the proof = 1 if {s, e} is odd, anc = 2 if {s,e}
is even.
Case &) Q} is partitioned into3 row-tori.

only if, ¢’ is odd. By the induction hypothesis, there is a patE

p(s,€') in rt(0,q — 1) of lengthgk — 1 (resp.qk — 2) if {s,e} is
odd (resp. even). The path

p(s,€), (€ ,0q,i-1)s (Vgim1,Vg,i—2)s (Vgim2,Vq.i—3),
ey (Uq,i+1: 6)
is as required.

The result follows by induction.
We now deal with first scenario in the base case.
Proposition 3: Consider the k-ary 2-cube Q5 where k > 6 is
even and where 2 of the nodes are faulty. Let s and e be any
two distinct, non-faulty nodes. There is a path of length at least
k% — 5 (resp. k? — 6) from s to e if {s,e} is odd (resp. even).
Proof: W.l.0.g. suppose that the two faulty nodes gge=
vo,0 @and f1 = vy, ,» With p # 0. We begin by partitioning)’ into
3 or 4 row-tori. If p € {1,2,k — 2,k — 1} then:
o if p=1o0rp=2then we partitionQ} into A = rt(k—1,0),
B =rt(1,2) and X = rt(3,k — 2);
o if p=k—2o0rp=k—1 then we partitionQ} into A =
rt(0,1), X =rt(2,k—3) and B = rt(k — 2,k — 1).
If pe{1,2,k—2k— 1} then:
o if p # 3 is odd then we partitiorQ5 into A = 7£(0,1),
X =rt(2,p—2), B=rt(p—1,p) andY = rt(p+1,k—1);
o if p = 3 then we partitionQ% into A = rt(k —1,0), X =
rt(1,2), B=rt(3,4) andY = rt(5,k — 2);
« if p is even then we partitio®’ into A = rt(0,1), X =
rt(2,p—1), B=rt(p,p+1) andY =rt(p+ 2,k —1).
The outcome is that we have one of the two partitioned strastu

as in Fig. 4, where consecutive row-tori are joined by colump _

ub-caseif The nodess ande both lie in A.

By Lemma 1, there exists a pathy (s, e) in A of length at least
2k —2—e. A simple counting argument yields that there is at least
one link of p4 (s, e) lying on row 1; w.l.o.g. let(vq ;,v1,441) be
such a link (the case when the link {$; ;41,v1,;) is almost
identical). By Lemma 2, there exists a patk (v2,;,v2,41) in X
of lengthk(k —4) — 1. Let p(s, e) be obtained by joining 4 (s, )
to px (v2,4,v2,i41) OVer (vy4,v1,i+1). Again, a simple counting
argument yields that there are at least two non-incideiks liof
p(s,e) lying on rowk—3; w.l.o.g. let(vy,_3 j, vp—3,j+1) be such a
link wherewvy,_s ; # f1 # vi—2,+1. By Lemma 1, there exists a
path pp(vg—_2 j,vp—2,j+1) in B of length at leastk — 3. The
path obtained by joining(s,e) t0 pp(vk—2 j,vk—2 j+1) OVEr
(Vk—3,j,Vk—3,;+1) has length at least® — 4 — .

Sub-casei{) The nodes is in A and the node: is in X.
Choosev, ; such thatv; ; is odd if, and only if,s is even, and
vg; # e (a simple counting argument yields that such a nedg
exists). By Lemma 1, there exists a path(s, v1 ;) in A of length
at least2k — 3. By Lemma 2, there exists a pafx (v, €) in
X of lengthk(k — 4) — €. Let p(s,e) be the path

pA(s,v14), (v1,i,v2,4), px (V2,i,€).

A simple counting argument yields thats, e) contains at least
two non-incident links on rovit—3; w.l.0.g. let(vy—3 j, vp—3 j+1)
be a link of p(s,e) such thatv,_5; # fi # vk—2+1. By
Lemma 1, there exists a pathp(viy—2 j,vk—2,j+1) in B of
length at leask — 3. The path obtained by joining(s,e) to
pB(Vk—2,j,Vk—2,j4+1) OVEr (vp_3 j,vL_3 j4+1) has length at least
— €.

links. In particular, w.l.o.g. we may assume that: when the

partition involves3 row-tori, we have the situation as in Fig.a#(
with fo = v € A =7t(0,1), X =rt(2,k—3) and f; € B =
rt(k — 2,k — 1); and when the partition involves$ row-tori, we
have the situation as in Fig. B)( with fo = vg,0 € A = rt(0,1),
X =rt(2,q—1), f1 € B=rt(q,q+1) andY =rt(q+2,k—1),
for some every where4 < g < k — 4.

Sub-casei{i) The nodes is in A and the node: is in B.

Choosev; ; such thatv; ; is odd if, and only if,s is even, and
v1,; # s. By Lemma 1, there exists a pay(s,v1,;) in A of
length at leasek — 3. Choosevy,_5 ; such thatv;,_ ; is odd if,
and only if,e is even, andf # v,_o ;. By Lemma 1, there exists
a pathpp(vi—2 j,e) in B of length at leasgk — 3. By Lemma 2,



there exists a pathx (v ;,vp—3 ;) in X of lengthk(k —4) —e. apathpy (vi_1,¢) inY of lengthk(k —1—¢g—1)—1. Letwy ;

The path be such that does not lie on colump and v, ; is odd if, and
_ o _ _ _ _ only if, s is odd. By Lemma 2, there exists a paik (s, vz ;)
pa(s 1), (V1,6 v2,4): PX (V2,0 Vk=3.5), (VE—3,5> Vk—-2.); in X of length k(g — 2) — 1. By Lemma 1, there exists a path
pB(Vk—2,j,¢€) pa(v1j,v0,) in A of length at leasgk — 2 —e. Let p(s, ¢) be the
has length at leagt? — 4 — . path
Sub-casei{) The nodess ande both lie in X. px (8,02,5), (v2,5,01.5), pA(V1,5,v0,0), (V0,05 Vk—1,)
By Lemma 2, there exists a pathy(s,e) in X of length Py (Vg1 €)-

k(k —4) —e. A simple counting argument yields thak (s,e) Necessarily, there are at least two non-incident links of
always cpnt_auns a_t least one link on rawand also that there are (s, vp.;) ON rOWq—1; W.1.0.g. let(vy—1.m, vg—1.m+1) be such

two non-incident links on row: — 3, unless we have the specialy |ink with vgm # f1 # vgms1. By Lemma 1, there exists a
situatioq whe_rek =6, ande havg a common neighbour ON rOWpath p g (vg,m, Vg.m+1) iN B of length2k — 3. The path obtained
kE—3 .WI'[h _th|s neighbour not lying ompx (s,e), and neithers  py joining p(s,€) 10 pp(vg,m, Vg.mi1) OVEr (Vg—1.m» Vg—1.mi1)

nor e is adjacent orpx (s, e) to a node on row: — 3. SUPPOSE pas length at least? — 4 — . The result follows. n

that there are two non-incident links on row— 3. W.l.o.g. let We deal with the case wheh = 4 later (as we do also for
(Vk—3,5,Vk—3,5+1) @Nd (v2,i,v2,i11) be links of px (s, e) where sybsequent propositions).

Uk—2j 7# f1 # vk—2541. By Lemma 1, there exists a path The next proposition deals with the next scenario in the base
pB(Vk—2,j,vp—2,j+1) (r€SP.pa(v1i,v1,i+1)) IN B (resp.A) of case.

length at leastk — 3. W.l.o.g. suppose that the nodeg 3 ;, Proposition 4: Consider the k-ary 2-cube Q% where k > 6 is
Vk—3,j+1, v2,i andwvg ;41 come in that order as we move alonGaven and where 1 of the nodes is faulty. Let s and e be any two
the pathpx (s, e). The path distinct, non-faulty nodes. There is a path of length at least k% —3

(resp. k? — 4) from s to e if {s,e} is odd (resp. even).

S, VE—3.), (Vp_3 i, Vk—92.7), V2. iy V2 it1 ), . o -
P (8, 0k=3.3), (V3,5 Uk=2,5), PB(Vh=2.5: Vk—2,5:+1) Proof: The proof is a much simplified version of the proof

(Vk—2,5+1,Vk—3,j+1), PX (Vk—3,j+1,v2,), (v2,6, v1,0), of Proposition 3. Essentially, we partitio% into 2 row-tori,
pA(1,5,01,i11), (V1,i41,v2,i41), px (V2,i 41, €) A =rt(0,1) and X = rt(2,k — 1), and follow the constructions
in Sub-cases&(i), (a.ii) and @.iv). The result follows. [ ]

has length at leagt? — 4 — «.
Alternatively, suppose that we are in the special situatiop
described above (and o= 6). W.l.0.g. suppose that = v3 Ir
ande = v3 2; S0, the path(vs 3,v34), (v3,4,v35) is a sub-path of
px(s,e). If f1 # vs4 then we can find two linkgvs ;,v3 j41)
and (v ;,v2 ,4+1) Of px(s,e), as above, and so obtain our pat

We now consider when there are only faulty links@§, but
st we construct some basic hamiltonian circuits on rovi-to
Consider the row-torust(0, p—1) in Q%, for some evenp where
2 <p < k-1 For every eveni € {0,1,...,p — 2}, build the
Hollowing cycle C;:

as required. So, suppose thfat= vi 4. Let pp(va,3,vas) bethe (v 0,v51), (vi1,vi2), -5 (Vi k=2, k=15 (Vi k1, Vit 1,k—1);
path (Vigt1,k—1+Vig1,k—2), -+ (Vig1,1,Vi41,0)5 (Vit1,05Vi,0)-
(v4,3,04,2), (va.2,94,1); (Va,1,v4,0), (V4,0,V4.5), Join the cycleCy to the cycleCs over the links(vyo,v1,1) and

and joinpx (s, e) 10 pp(va 3, va.5) OVEr (v3.3,v3.4), (v3.4,v3.5) tO (v2,0,v2,1), and denote the re_sulting cycle Wy,0. Now join
obtain the pathp(s, ) of length 16 — . We can now joinp(s,e)  Fo.0 to the cycleCy over the links(vs 0, v3,1) and (va,0, va,1),
to the cycle induced by the nodes on réyover two appropriate @nd denote the resulting cycle %, also. Proceed in this way
links, and to an appropriate pagh (v1;,v1.44+1) in A of length 10 obtain the hamiltonian cycl& o of the row-torusr¢(0,p — 1)

at leasto, as we did above, to obtain our required path of lengfipoted atvoo. _ _
at least32 — ¢ (that is, k2 — 4 — ¢). If 3 <p < k—1is odd then build the cycl& o in the row-torus

rt(0,p — 2) and join it to the cycle induced by the nodes on row
p—1, over the links(vp—2,0, vp—2,1) @and(v,—1,0,vp—1,1); denote
L N . . the resulting cycle as the cyclg, o of rt(0,p—1) rooted atvg g.
Case ) @5 is partitioned intod row-tori. The hamiltonian cycleZy o in r£(0,6) in Q3 can be visualised as
If s ande lie in AU X U B then by the analysis for Case)( in Fig. 5.
there is a pattp(s,e) in AU X U B (and the connecting column  Note that we also have the hamiltonian cycles; of rt(0,p—
links) of length at least(¢ + 2) — 4 — ¢ (note that all paths 1), for all p € {2,3,...,k} andi € {1,2,...,k — 1}, obtained
constructed in Casea) actually lie in the row-torus induced by by starting the above process at the root-nogle as opposed to
AU X UB). A simple counting argument yields that there is atodew .
least one link ofy(s, ¢) on rowg+1 or on row0; w.l.o.g. suppose  Proposition 5: Consider the k-ary 2-cube Q5 where k > 6 is
that it is rowq + 1 and let(vg41 5, v4+1,5+1) b€ such a link. By even and where there is 1 faulty link. Let s and e be any two
Lemma 2, there exists a pathy (vy4-2,5, v442,j+1) INY of length  distinct nodes in the row-torus r¢(0,p — 1), where 2 < p < k.
E(k—1—¢—1)—1. Join p(s,e) 10 py (vg42,j,vq+2,j+1) Over Thereisa pathin rt(0,p —1) from s to e of length pk — 1 (resp.
(vg+1,j»Vg+1,5+1) to Obtain a path of length at least — 4 —e.  pk — 2) if {s,e} is odd (resp. even).
A similar argument holds shouldande lie in BUY U A. Proof: By Lemma 2, we may assume that the faulty link
Necessarily, the only remaining case is whelies in X and lies in r¢(0,p — 1). W.l.o.g. we may assume that the faulty link
e liesinY. Letvg; be such that ande do not lie on columni is either(vq,0,va+1,0) OF (vq,0,va,1), Whereo < a < p—2. As
anduy ; is odd if, and only if.e is odd. By Lemma 2, there existsbefore,e = 1 if {s,e} is odd, ande = 2 if {s,e} is even.

The remaining sub-cases are essentially identical to taleady
considered.
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d hd hd h in the same column as If i = 1 andj # 2 then lete’ = vy ».
Either way, letpg(s,e’) be a path on row of lengthk — 1. If

> O O O O O ®) i=1andj =2 then lete’ = vy 3 and letpy(s,e’) be a path on
row 0 of lengthk — 2.

§ ) Let s’ be the neighbour of’ on row 1 and letp;(s’,e) be

A 4 Yy ¥ ¥ h a path on row0 which contains the linkvy o,v1,1). Define the
pathp(s,e) as

b O O ©, O, ©, Q oy ,

p0(87 € )7 (6 » S )7 Pl(s 76)‘

> C O O O O C Iteratively join p4(s,e) to appropriate linkgwvy ;, vy ;1) over
(vo,1,v0,1+1) SO that the nodes used on rawdo not already
appear orp (s, e). Links should be replaced (by paths) so that

) e . .

d h hd hd hd hd S if {s,e} is odd (resp. even) then every noderof0, 1) appears
on (the amended) 4 (s, e) (resp. except one).

© O O O O O Q If p = 2 then we are done. Ip > 3 then let D be the

. S . . hamiltonian cycleF, o in the row-torusrt(2,p—1), and ifp = 3
7 3 b ’

Figure 5. The hamiltonian cyclé o in r£(0,6) in Q5. then let D be the cycle induced by the nodes on rawJoin
pA(S,e) to D over the ”nkS(ULo,Ul’l) and (02’0,1}2,1). The
resulting path is as required.

Note that ifp = 2 then we have covered all cases, so henceforth
we assume that > 3.

Case §) a =0, and the faulty link is(vg 0, v1,0)-

Sub-casei} s ande lie on row 0.

If s =v9; ande = vy ; then w.l.o.g. we may assume thak j
and that it is not the case that bath-0 andj = k& — 1.

Suppose that it is not the case that 1 andj = k — 1. Let
po(s,e) be the path

Sub-casei{i) s lies on row0 ande lies on rows2,3,...,p — 1.

Suppose that = vg ;. If ¢ # 1 then definee’ = vo,i—1, and if
i =1 then definee’ = vy ;+1. Define the pathpy(s,e’) to be the
path on row0 of lengthk — 1. Let ¢’ be the neighbour o’ on
Note that the length ofi(s,e) is odd if, and only if,{s,e} is row 1, and lete”” be a neighbour ot” on row 1 that does not
odd; so, there are an even number of nodes on Gathat are lie in the same column as. Define the pattp; (e”,e’”’) as the
not on po(s, e) if, and only if, {s,e} is odd. LetC be the cycle path of lengthk — 1 on row 1. Define the pathp4(s,e”’) as
induced by the nodes on row lteratively join C' to appropriate N o on nom

links (vg,1,v0,1+1) Over (vq,v1,41) SO that the nodes used on po(s, €), (¢, €7), prle”, 7).
row 0 do not already appear gy (s, ). Links should be replaced The pathp 4 (s,¢””’) has lengtrek — 1.

(by paths) so that if s, e} is odd (resp. even) then every node of Let s’ be the neighbour ot”” on row 2. If p > 4 then by
rt(0,1) appears on the (amended) cycleor on pg(s,e) (resp. Lemma 2, there is a pathy (s, ) in rt(2,p— 1) of lengthk(p —
except one). Joipg(s, e) to C over two corresponding links (this 2) — ¢, and the path

is always possible) and denote the new pathp s, e). The path
pa(s,e) has length2k — e. This construction can be visualised
in Fig. 6, where the dashed links show hew(s, e) is joined to
the amended”.

(8,00,i—1), (V0,i—1,v0,i—2) - - - » (V0 j+1,€)-

pals, ), (")), px (s e)

is as required. Ip = 3 then define the pathx (s, e) to be a path
on row 2, and letp(s, e) be the path

N e " " /
PA(S, € (€ 8 ),px(s,¢€).
6= — (5,¢"), (" 5"), px (s )
T T T T r T lteratively join p(s,e) to appropriate links(vy;,vs,11) Over
6 _____ C == oy Vo oy o D (v1,1,v1,41) SO that the nodes used on ravdo not already
J A\ \J A\ S

appear onp(s,e). Links should be replaced (by paths) so that
if {s,e} is odd (resp. even) then every node of r@wappears
on the amended path (resp. except one). The resulting path is
required.

Sub-caseiy) s ande lie on row 1.

Figure 6. Joiningoy (s, e) to the amended cycl€'.
Suppose that =1 andj = k — 1. Let pg(s, e) be the path

(s,v0,2), (v0,2,v0,3), - - -, (Vo k—2,€)-

Let C be the cycle induced by the nodes on rowdoinpg(s,e)  Proceed as in Sub-cas 1o build a path (analogous t@) (s, ¢).
to C' over (vo,1,v0,2) and (v1,1,v1,2), and denote the new pathThe pathp(s,e) is such that it contains a link on row Join
by pa(s,e). The pathp(s,e) has lengthek — 2. pa(s,e) to the cycleD, as constructed in Sub-casg énd over
If p = 2 then we are done. Ip > 3 then let D be the corresponding links, to obtain a required path.

hamiltonian cycleEs o in the row-torusr¢(2,p—1), and ifp = 3
then let D be the cycle induced by the nodes on rawJoin
pa(s,e) to D over two corresponding links, and the resultin
path is as required.

Sub-case\) s lies on rows1,2,...
,3,...,p— L.

%y Lemma 2, there exists a paiis, e) in 7¢(1,p — 1) of length
(p — 1)k — e. There is at least one link gf(s,e) on row 1 that

,p — 1 and e lies on rows

Sub-casei{) s lies on row0 ande lies on rowl1.
Let s = vg; ande = vy j; w.l.0.g. we may assume that k— 1.

is not incident withvy o. Joinp(s, e) to the cycle induced by the
nodes on row) over two corresponding links to obtain a required

If i # 1 then lete’ be a neighbour of on row0 that does not lie path.



Case ) 0 # a # p — 2 and the faulty link is(vq,0, va+1,0)- If {s,e}is odd andi < j < k — 1 then definep(s, e) as

Sub-caseif s ande lie on rowso,1,...,a. Cy (8,01.0), ZF (v1,4,v1,-2), (V1 j—2,v1,5-1), (V1,j—1,00,5-1);

By Lemmg 2, there is a pat,{ﬁlA(s.,e).in rt(0, a) of length (a + (vo,j—hvo,j),C;j_l(Uo,j,e)

1)k — e. Either: there exisg disjoint links of p 4 (s, e) on row a, . .

and so we have a link gf(s, ¢) on rowa that is not incident ! {s.¢} is odd andi = j then definep(s, ¢) as Cy (s, ¢), and
With v40; Or k = 6 and the nodes, 2, va 3, v4.4 Constitutes, e I @7 1 then defineC as the cycle

and a node not op4 (s, e). However, in this latter case, Ié o
be the hamiltonian cycle int(0, a) but with the sub-path from
to e involving (some of) the nodes, 2, v 3,v4.4 removed (so, If {s,e} is even and2 < j <'i then definep(s,e) as
the length of this sub-path i, if {s,e} is odd, and2, if {s,e}
is even). Either way, we obtain a path, calpii (s, e), in rt(0, a)

Cy (v0,i—1,01,i—1), (V1,i—1,v0,i—1)-

Cy (5,v1,1), Z7 (01,1, v1,543)s (V1,43 V1,j+2)s (V1,425 V0,j+2)

of length (a + 1)k — e with the property that there is a link of (v0,j+2,v0,j+1), (v0,j+1,v0,5), Co (vo,5, €).

pa(s,e) on rowa that is not incident withvg . If {s,e} is even andj = 0 then definep(s, ¢) as
Joinp 4 (s, e) to the hamiltonian cyclé&, 11,0 of rt(a+1,p—1), B N

over some appropriate links, and the path obtained is asreetju Cy (5,01,4), 27 (i v1,k-1)5 (V1 k-1, €)-

Sub-casei{) s lies on rows0,1,...,a ande lies on rowsa + If {s,e}is even and < j < k — 1 then definep(s,e) as

l,a+2,...,p— 1.

Suppose that we can choaseon rowa such thatw, o # ¢’ # s;
e and ¢’ are not adjacent; andls,¢’} = {s,e}. If so then by
Lemma 2, there is a paghu (s, ) in 7£(0, a) of length(a+1)k—e¢ If p > 3 then letD be the hamiltonian cycl&,  of rt(2,p—1),

so thate is not adjacent te’. Define s’ to be the neighbour and if p = 3 then letD be the cycle induced by the nodes on row
of ¢ on rowa + 1. By Lemma 2, there is a pathx(s’,e) in 2. If there is a cycleC then joinC and D over two corresponding
rt(a+ 1,p — 1) of length(p — a — 1)k — 1. The path links and denote the new cycle by also. Now joinp(s,e) to
the cycle D, and the path obtained is as required.

Sub-casei{i) s lies on row0 ande lies on rows2,3,...,p — 1.

Cr (s,v1,3), Z 1 (v1,4,v1,5-3), (V1,j—3, V1 j—2), (V1 j—2,

v1-1), (U1,j-1,v0,-1), (v0,j—1,v0,5), C¢f (vo,j, €)-

pa(s,€), (€5, px (s, e)

is as required. _ _ Suppose thap > 3. If {s,e} is even then let the node on
Alternatively, suppose that does not exist. This only happensrow 1 be such that’ and s have a common neighbour on row
whenk =6, and = vq,2 ande = vq41,4) OF (s = vq,4a @nde = (0 and also such that does not lie on the same column asif

va+12). Definee’ = vy 3 and letE o be the hamiltonian cycle (s, ¢} is odd then let’ be the neighbour of on row 1. By the
in 7¢(0,a) with the link (s, ¢’) removed; call this patfp4(s,¢’).  construction in Sub-caséi), there is a pathy4 (s, ¢’) in r£(0,1)
By Lemma 2, there is a pathix (va+1,3,¢) in rt(a+1,p—1) of  of length2k — e.

length (p — a — 1)k — 1. The path Let s’ be the neighbour of’ on row 2 (note thats’ # e and
"o that {s’,e} is odd). By Lemma 2, there is a paghx (s’,e) in
pals,€), (€ vat1,3), px (Vat13,€) rt(2,p — 1) of length (p — 2)k — 1. The path
is as required.

Case €) a = 0 and the faulty link is(vg 0, vo,1).

Sub-casei} s ande lie on row 0.

PA(57 6/)7 (6/7 S/)u PX (Sl7 e)

is as required.

Suppose thap = 3. Let s’ be a neighbour ot on row 2 so
Let po(s,e) be the path on rovo which contains the faulty link that s’ does not lie on the same column gsand lete’ be the
(v0,0,v0,1), and letC be the cycle induced by the nodes on roweighbour ofs’ on row 2. By the construction in Sub-casé),(
1. Join py(s,e) to C over the links(vg g, v0.1) and (v1 g,v1,1), thereis apatha(s,e’) in rt(0,1) of length2k —e. Let px (s, €)
and denote the resulting path pys, e). Iteratively joinp(s,e) to  be the path on rov of lengthk — 1. The path
appropriate linkgvg ;, vo ;41) Over(vy ;, vy ;41) SO that the nodes
used on row0 do not already appear g#(s, e). Links should be
replaced (by paths) so that{, e} is odd (resp. even) then everyis as required.
node of row(0 appears on the amended path (resp. except O"Q)Jb-casei(/) s ande lie on row 1.

Denote the amended path ,e) also.
P bYs, ) Let s = v;; ande = vy ;; w.l.o.g. we may assume that< j.

If p > 3 then letD be the hamiltonian cycl&s o in r¢(2,p—1), L .
and if p = 3 then letD be the cycle induced by the nodes of row:Et P1(s,¢) be the path on row containing the link(vy,o, v1,1).

- Lo . Join p1 (s, e) to the cycle induced by the nodes on rowver the
2. Joinin to D over two corresponding links yields a path. .
Iningp(s, ¢) verw ponding & Y P inks (v1,0,v1,1) and(vo,0, vo,1), and denote the resulting path by

pA(S7 6/)7 (6/7 5/)7 PX (8/7 e)

as required. ; " . -

- ) ) pAa(s, e). lteratively joinp 4 (s, e) to appropriate link$v ;, vy ;41)
Sub-caseii) s lies on row0 ande lies on rowl. over (vg 1, vo,1+1) SO that the nodes used on ravdo not already
Suppose that = vy ; ande = vy ;. W.L.o.g. we may assume thatappear orp4(s,e). Links should be replaced (by paths) so that
i is odd. if {s,e} is odd (resp. even) then every node of rowppears on

If {s,e} is odd andl < j < then definep(s, e) as the amended path (resp. except one). Denote the amended path
by p(s,e).
Cy (5,01,0), 27 (01,3, v1,542), (V1,542, 01,541, (V1,541,V0,541), If ; > )4 then letD be the hamiltonian cycl&, ; of rt(2,p—1),
(v0,j+1,0,5), C1 (vo 5, €). and if p = 3 then letD be the cycle induced by the nodes on



row 2. Join p(s,e) to D over two corresponding links, and thethe link (v2,0,v2,1). Joinpx (s, e) to C' over two corresponding

resulting path is as required.
Sub-case\| s lies on row1 ande lies on rows2,3,...,p — 1.

Suppose thap > 4. Let ¢/ be a neighbour of on row 1 such
that e does not lie on the same column &s We now define a
path pa(s,e’) in 7t(0,1). If s = v11 ande’ = v1 ¢ then define
pa(s,e’) as

Nt (s,01 5-1), (V1 51,00 5—1), (V0 5—1,v0,0), (v0,0, €);
if s=wv1,0 ande’ = w1 then definep4(s,e’) as
N7 (s,v1,2), (v1,2,00,2), (v0,2,v0,1), (v0,1,€);

otherwise, letp (s, e’) be the path on row containing the link

(v1,0,v1,1), and joinps (s, €') to the cycle induced by the nodes on

row 0 (which contains the faulty link) over the link@1 o, v1,1)
and (vo,0, vo,1), denoting the resulting path kyu (s, e”) (joining
as we do results in the paphy (s, e’) being fault-free).

Let s’ be the neighbour of’ on row 2. By Lemma 2, there is
a pathpx(s',e) in 7t(2,p — 1) of length (p — 2)k — ¢. The path

pA(57 6/), (6/7 3/)7 pX(S,’ 6)

is as required.

Suppose thap = 3. Let ¢/ be a node on row such that
s # ¢ andée’ is in a column adjacent to the column on whieh
lies. Clearly,{s, e} is odd if, and only if,{s,¢’) is odd. We now
build a pathp4(s,e’) in rt(0,1); w.l.o.g. we may assume that
s=w1, ¢ =v;; andi < j, with i # 0 (as usual, we can apply
automorphisms oft(0, 1) if necessary). Ifs, e} is odd and; # 1
then definep (s, ¢’) as

C1 (8,v0,4), Z ™ (v0,4,v0,5-1), (v0,j—1,v0,5), CFf (vo,5,€").
If {s,e} is odd andi = 1 then defingp4(s,¢’) as
NT(s,01,-1), (v1,-1,v0,5-1), (V0,j—1,0.5), Cf (v0,5,€).
If {s,e} is even ands # 1 then definep4(s,€’) as
C (5,00.4), ZT (v0,4,v0,5—2)5 (V0 j—2,v0.5—1), (V0.j—1,0.7),
C(T(’Uo,j,e/).
If {s,e} is even ands = 1 then definep 4 (s,¢’) as
N*(s,v1,5-2), (v1,j-2,v0,j—2), (V0,j—2,v0,j—1), (V0,j—1,V0,5),
CS_(’U(],wel).

Let s’ be the neighbour of’ on row 2 and letpx (s’,e) be the
path on row2 of lengthk — 1. The path

PA(S, 6/)7 (elv 5/)7 PX (5/7 6)
is as required.

Sub-case\f) s ande lie on rows2,3,...,p — 1.

Suppose thap > 4. By Lemma 2, there is a pathx(s,e) in
rt(2,p — 1) of length (p — 2)k — e. Let C be the cycle

Cy (v1,0,0,0); (v0,0,v1,0)-

Joining px (s,e) to C over two corresponding links yields a
required path.

Suppose thap = 3. If (s = va,0 ande = v 1) Or (e = v20
ands = vy 1) then letpx(s,e) be the path on rov of length
k—1; otherwise, lefox (s, e) be the path on ro not containing

links and denote the resulting path pys, e).

If (s = 120 and e = U271) or (e = 120 and s = ’U2,1)
then p(s,e) is as required. Otherwise, iteratively joj(s,e) to
appropriate linkgvy ;, vo ;4.1) OVer(vy ;, vy ;41) SO that the nodes
used on row2 do not already appear g#(s, ). Links should be
replaced (by paths) so that{§, ¢} is odd (resp. even) then every
node of row2 appears on the amended path (resp. except one).
The path so obtained is as required.

Case () The faulty link is (vq,0, va+1,0), Wherel <a <p—3.
Sub-casei} s ande lie on rows0,1,...,a + 1.

By Case €), there is a patlpa(s,e) in rt(0,a + 1) of length
(a +2)k —e. If a # p— 3 then letC be the hamiltonian cycle
Fqy2,0 Of rt(a+2,p — 1), and ifa = p — 3 then letC be the

cycle induced by the nodes on rgw- 1. Joiningp 4(s,e) andC
over two corresponding links yields a path as required.
Sub-casei{) s lies on rows0,1,...,a + 1 ande lies on rows
a+2,a+3,...,p—1.

Suppose that # p— 3. Let the node:’ on rowa+1 be such that
s # ¢ and{s,e} = {s,¢'}. By Case (), there is a pathp(s, ¢’)
in rt(0,a + 1) of length (a + 2)k — ¢. Let s’ be the node on row
a + 2 adjacent toe’. By Lemma 2, there is a pathy (s',¢) in
rt(a+2,p — 1) of length (p — a — 2)k — 1. The path

pa(s, €I)7 (6/7 Sl)a PX (8I7 e)
is as required.
Suppose that = p — 3. Let the node=’ on rowa + 1 be such
thate’ # s and e’ lies on a column adjacent to the column on
which e lies. By Case d), there is a pathp(s,e’) in rt(0,p — 2)
of length(p — 1)k — €. Let s” be the neighbour of’ on rowp — 1
and letpx (s’,e) be the path of length — 1 on rowp — 1. The
path

!/ !/ / /
pa(s,e), (e, s),px (s e)

is as required. [ ]

Proposition 6: Consider the k-ary 2-cube Q% where k > 6 is
even and where 2 of the links are faulty. Let s and e be any two
distinct nodes. There is a path of length k2 — 1 (resp. k% — 2)
from s to e if {s,e} is odd (resp. even).

Proof: W.l.o.g. we may assume thétg o, v1,0) is a faulty
link. Partition Q% into rt(k — 1,0) and 7t(1,k — 2). As usual,
e=11if {s,e} is odd, ande = 2 if {s,e} is even.

Case &) Both s ande lie in ri(k — 1,0).

By Proposition 5, there is a pathy(s,e) in rt(k — 1,0) of
length 2k — €. Either there is a link ofp4(s,e) on row k — 1
that is not incident with any faulty link or there is a link of
pa(s,e) onrow0 that is not incident with any faulty link; w.l.0.g.
suppose thatvy,_; ;,v5-1,+1) iS a link of pa(s,e) such that
neither (vy_1;,v5—24) NOI (vip_141,vk—2,:+1) IS faulty (the
alternative case is similar). By Proposition 5, there is #hpa
px (Vg—2,i,Vk—2i41) in rt(1, k — 2) of length (k — 2)k — 1. The
path obtained by joining 4 (s,e) t0 px (vg—2,i, Vp—2,i+1) OVEr
(Vk—1,iVk—1,i+1) IS @s required.

Case ) s lies inrt(k —1,0) ande lies inré(1,k — 2).

Let (vi_1,,vx—2,) be a healthy link such that# v,_1;, e #
vip—2,; and{s,v;_1 ;} = {s,e}. By Proposition 5, there is a path
pa(s,vp—1,) in rt(k —1,0) of length2k — e and there is a path
px (Vg—24,€) in rt(1,k —2) of length (k — 2)k — 1. The path

PA(S;V—1,5), (Vk—1,5,Vk—2,4), PX (Vk—2,i, €)



is as required. [ ]

at most2n — 4 faults then we are done. So w.l.0.g. suppose that

Finally, we deal with the case when there is one faulty nodg; o contains2n — 2 or 2n — 3 faults.

and one faulty link.

Proposition 7: Consider the k-ary 2-cube Q5 where k > 6 is
even and where there is a faulty node and a faulty link. Let s and
e be any two distinct, non-faulty nodes. There is a path of length
at least k2 — 3 (resp. k? — 4) from s to e if {s,e} is odd (resp.
even).

Proof: W.l.o.g. we may assume that the faulty nodejs.

Suppose tha®); o contains2n—3 faults, and so there is exactly
1 fault not inQ1 0. Temporarily regard some fault, say, ofQ1 o
as healthy and apply the induction hypothesisitg, (note that
w might be a node or a link). Thus, there is a dimensiosuch
that when we partitior) o over dimensioni, the resulting:-ary
(n — 2)-cubes each contain at mast — 6 faults. Consequently,
when we partitionp” over dimensioni, each of the resulting-

Moreover, we may assume that either the faulty link does igot lary (n — 1)-cubes contains at mogt. — 4 faults (the ‘temporarily

in r¢(0,1) or the faulty link is(vg 0, vo,1) (again, by applying the
usual automorphisms). However, if the faulty link (ig o, vo,1)

healthy fault’w needs to be recast as faulty, and there @ther
fault not in Q1o to consider).

then we can assume that there are no faulty links as the fatt th Suppose thaf); o contains2n — 2 faults, and so there are no

vp,0 IS a faulty node means that the litikg o, vo,1) iS never used.
Thus, we can assume that the faulty link does not liet{, 1).
As usual,e =1 if {s,e} is odd, ande = 2 if {s,e} is even.
Case &) Both s ande lie in r¢(0,1).

By Lemma 1, there is a paihy (s, e) in rt(0, 1) of length at least
2k — 2 — e. Either there is a link op 4 (s, e) on row 0 that is not
incident withvg o nor a faulty link, or there is a link 0p4 (s, e)

on row 1 that is not incident with a faulty link. W.l.0.g. suppose

that vy ;,v1 541 iS @ link of p4(s,e) that is not incident with a
faulty link (the alternative case is similar). By Propasiti5, there
is a pathpx(’l)27i,’l)27i+1) in rt(2, k — 1) of Iength (k — 2)]€ — 1.
The path obtained by joining4(s,e) t0 px (v2i,v24+1) Over
(v1,i,v1,i+1) IS as required.

Case b) s lies inrt(0,1) ande lies inrt(2,k — 1).

Letv, ; be such thas # vy ;, (v1,4,v2,;) is healthy ands, vy ;} =
{s,e}. By Lemma 1, there is a patha(s,vi,;) in r¢(0,1) of

faults outsideQ; o. Temporarily regar@ faults, w andw’, say,
of Q1,0 as healthy and apply the induction hypothesisto.
Thus, there is a dimensiosé such that when we partitiof; o
over dimensiond, the resultingk-ary (n — 2)-cubes each contain
at most2n — 6 faults. Consequently, when we partitig)f; over
dimensiond, each of the resulting-ary (n — 1)-cubes contains
at most2n — 4 faults (the2 ‘temporarily healthy faultsiw andw’
need to be recast as faulty).

In order for the result to follow by induction, all we need to
do is to verify the statement of the lemma for when= 4. Let
the faults of Q% be w;, for i = 1,2,...,6. Partition Q} over
dimensionl. Either each resulting-ary 3-cube contains at most
4 faults, and we are done, or the nodes involved in at |gat
{w; :i=1,2,...,6} have identical first components @; is a
link then the nodes involved in; are the nodes of the link, and
if w; is a node then the node involved in is the node itself).
We may assume that it is the latter and that shfaults whose

length at least2k — 2 — e. By Proposition 5, there is a pathfirst components (of the nodes involved) are identicahayews,

px (v24,e) in rt(2,k — 1) of length (k — 2)k — 1. The path
px(s,v1), (V1,4,v2,4), px (v2,i,€)

is as required. [ ]

w3, wg andws.

Partition Q§ over dimensiore. Either each resulting-ary 3-
cube contains at most faults, and we are done, or one of the
resulting k-ary 3-cubes contains eithe¥ or 6 faults. We may

From Propositions 3, 4, 6 and 7, we obtain the base case fgsume that the second componentsvof ws, ws and w, are

our main result so long ak > 6. However, whenk = 4 a

identical.

simple computer program (implementing an exhaustive &garc Partition Q5 over dimensiors. Either each resulting-ary 3-

verifies that Propositions 3, 4, 6 and 7 all still hold (we kedhis
verification as an exercise). Hence, we have the followirsglte
Theorem 8: Let k > 4 be even. In a faulty k-ary 2-cube Q% in

which the number of node faults f, and the number of link faults
fe are such that f, + fe < 2, given any two healthy nodes s and

e of Q5, thereis a path from s to e of length at least k% —2f, — 1

(resp. k? —2f, — 2) if the nodes s and e have different (resp. the
same) parities.

IV. THE INDUCTIVE STEP

cube contains at most faults, and we are done, or one of the
resulting k-ary 3-cubes contains eithe¥ or 6 faults. We may
assume that the third componentsugf, wo andws are identical.
Partition Q% over dimensiont. Either each resulting-ary 3-
cube contains at most faults, and we are done, or one of the
resulting k-ary 3-cubes contains eithe¥ or 6 faults. We may
assume that the fourth componentswf and wy are identical.
This yields a contradiction as eithei:; and wy are nodes and
w1 # we; OF wy OF we IS a link joining a node to itself. The result
follows. |

In this section, we complete the proof by induction of our Let us reexamine the proof of Lemma 9. Ideally we would like
main theorem. The following lemma simplifies the situatiohemma 9 to apply whem = 3 but the argument in the proof

considerably.
Lemma 9: Let QF have 2n — 2 faulty nodes and links, where
n > 4. There exists a dimension d such that when we parti-
tion QF over dimension d, the resulting k-ary (n — 1)-cubes
Qa,0:Qd,1,---,Qak—1 €ach contain at most 2n — 4 faulty nodes
and links.
Proof: Suppose as our induction hypothesis that 5 and
that the result holds fo@* , (with 2n — 4 faults). LetQ% have
2n—2 faults. PartitionQ” over dimension; if the resultingk-ary

(n—1)-cubesQ1,0,Q1,1,--

fails. However, we can classify exactly the fault configimas
leading to failure.

Suppose thaQX has4 faulty nodes. Following through the
argument in the proof of Lemma 9 yields that, up to isomonphis
the situations where the argument fails is when thfawults are
of the form (0,0, 0), (a,0,0), (0,b,0) and (0,0, ¢), for somea, b
andc all different fromo0.

Suppose thaf% has3 faulty nodes and faulty link. W.l.o.g.
suppose that the faulty link lies in dimensian Following the

.,@Q1,5—1 are such that each containsargument in Lemma 9 yields that, up to isomorphism, the situa
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tions where the argument fails is when thdaulty nodes are of Q12,Q13,...,Q1,,—1 Yields a path froms to e of the required
the form (0, 0, 0), (0,b,0) and (0,0, ¢), for someb andc different length.

from 0, and the faulty link is of the forni(, 0,0), (a + 1,0, 0)),

for somea. Case ) s lies in Q1,0 ande lies in Q1,4, for a # 0.

Suppose tha@’g has2 faulty nodes ana faulty links. W.l.0.g. ) ) ] .
suppose that one of the faulty links lies in dimensiorwith A simple counting argument ylelds_that there_emstsahyaidde
the other in dimensior (the two links cannot lie in the samewo € @1,0\ {eo} such thati{s, wo} is odd;w; is healthy, for all
dimension as otherwise we could partition over this dimemsi?=0,1,...,k—1;and all links of{(w;, wi;1) : 1 =10,1,...,k—
and be done). Following the argument in Lemma 9 vyields thak}Y{(wx—1,wo)} are healthy. By the induction hypothesis, there
up to isomorphism, the situations where the argument fails §XiSts @ pathpo (s, wo) in Q1,0 of length at least™ " —2fy — 1.
when the2 faulty nodes are of the fornf0,0,0) and (0,0, c), Suppose that # 1. A simple counting argument yields that
for somec different from0, and the faulty links are of the form there exists a healthy node € Q1.1 \ {e1} such that:{wy, 21}
((a,0,0), (a+1,0,0)) and((0,b,0), (0,b+1,0)), for somea and is odd; z; is healthy, for alli = 0,1,...,k — 1; and all links of
b. {(z3,2i41) 11 =0,1,...,k — 2} U {(2x_1,20)} are healthy. By

Suppose thaf% has1 faulty node and faulty links. W.l.o.g. the induction hypothesis, there exists a patfiwi, 21) in Q1 1
suppose that one of the faulty links lies in dimensigrone in of length at least”~! — 2f; — 1. Denote the path
dimension2 and one in dimension. Following the argument in
Lemma 9 yields that, up to isomorphism, the situations where
the argument fails is when the faulty node is of the faimo, 0) pols, wo), (wo, wi), p1(ws, 21)
and the faulty links are of the fornf(a,0,0), (a + 1,0,0)),

((0,4,0), (0,b + 1,0)) and ((0,0,¢), (0,0,¢c + 1)), for somea, b by p(s, z1).
andc.

Suppose thaf’ has4 faulty links. In this case, Lemma 9 holds
as at lease faulty links lie in the same dimension and we ca
partition over this dimension. We shall use these obsematin
the proof of the following theorem.

Throughout the rest of the paper, we adopt the following
notation. Suppose that we partitiap? over some dimension
d to get thek-ary (n — 1)-cubesQg0,Qq41:---,Qdr—1- Let by p(s,w2).
 be a node ofQ,;, say. Then we refer to the node @s;  Pproceeding iteratively in this way yields a palfs, z,_1)
.corre'spondmg tar (that is, thg node oY, ; Whose name is or (s, w, 1), depending upon whether — 1 is odd or even,
identical to that ofr except that itgith component ig as opposed respectively, of length at least™ ' —2(fo+ fi+...+ fa_1)—1.
to i) asx;. We also refer to the node asz;. W.L.o.g., suppose that the path ji$s, z,_1) (the other case is

Theorem 10: Let Q; be a k-ary n-cube, for some n > 2 and  similar). The node=, is odd if, and only if, the node is odd:
some even k > 4, with f, faulty nodes and f. faulty links, where  hence {s, e} = {za,¢}.
0< fu+ fe <2n—2.If s and e are distinct healthy nodes and
{s,e} is odd (resp. even) then there exists a path from s to e of
length at least k™ — 2f, — 1 (resp. k" — 2f, — 2).

Proof: We proceed by induction on. The base case of the
induction is handled by Theorem 8. Suppose, as our induction p(s,za—1), (2a—1,2a), pa(za, €)
hypothesis, that the result holds f@fn, wheren > 3 and for
all m < n. Let QF be ak-ary n-cube as in the statement of the , , —
theorem. Throughout — 1 if {s,e} is odd, ande — 2 if {s,e} DY #'(s:¢). The pathy'(s,e) has length at leasta + 1)k" ™" —
is even. 20fo+ fi+ ...+ fa) —e

Suppose that > 4. By Lemma 9, we may assume that when A simple counting argument yields that there is a ljak, ya)
we partition Q% over dimensiont, the resultingk-ary (n — 1)-  0f pa(za,e) such thate,+1 andy,+1 are both healthy nodes and
cubesQ1,0,Q1.1,--.,Q1 51 €ach contain at most — 4 faults. (T, Za+1) @nd(ya,ya+1) are both healthy links (to see this, note
Suppose that the number of faulty nodesdn; is f;, for i = thatpa(za,e) has length at least” ! —2f, —e > 2°" > —2(2n—
01,... k—1. 7 4)—2=22""2_4p+6, and so there are at least’ > —2n+3
mutually disjoint links onp, (zq, €); as there are at most — 2
faulty links in ourQ% and2?”" =% —2n+3 > 2n—2, whenn > 3,

By the induction hypothesis, there is a paf(s,e) in Q1 of at least one such linkza, ya) Of pa(za,e) must be as required).
length at least™ ' — 2/, — . Let (wo, 20) be alink of pg(s,e) By the induction hypothesis, there is a pathy 1 (2441, Ya+1) IN

for which w; and z; are healthy nodes (af)1,1) and (wo,w1) Q1,441 Of length at leask™ —2f,1 — 1. Form the path obtained
and(zg, z1) are healthy links (a simple counting argument showsy joining o’ (s, ¢) t0 pat1(Tat1,yar1) OVEr (x4, yq) and denote
the existence of such a link). By the induction hypothedisye this path byy”(s,e). The pathp”(s,e) has length at leasta +

is a pathp; (wy,z1) in Q1,1 of length at leas&™ ' — 2f; — 1. 2)k" "' —2(fo + f1 + ... + fat1) — €. Proceeding similarly and
Let p(s,e) be the join of po(s,e) to pi(w1,z1) Over (wo,zo). iteratively in Qi q42,Q1,a+3;---,Q1 k1 results in a path from
The pathp(s,e) has length at leasek™ ' — 2(fo + f1) — e. s to e of the required length (the construction can be visualized
Proceeding similarly and iteratively with appropriate hgatin ~ as in Fig. 7).

Suppose that # 2. By the induction hypothesis, there exists a
ath pa(z2, w2) iN Q1,2 Of length at least™ ! —2f, — 1. Denote
he path

p(s, 1), (21, 22), p2(z2, w2)

By the induction hypothesis, there exists a patlizq,e) in
Q1,, Of length at least™ ! — 2f, — e. Denote the path

Case §) s ande lie in Q1.
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Va1
Ya
e
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Ql,a Ql,a+1 Ql,k»l Ql,k-z Ql,k»l Ql,o Q1,1
Figure 7. The construction in Cask)( Figure 8. The construction in Case).(

Now suppose that = 3 and suppose further that we have n€ase () s lies in Q1 o ande does not lie inQ1 .

faulty links (we deal with when there are faulty links latéffom  For the moment, regard the nodg = (0,0,0) as healthy. By
the observation following Lemma 9, we may assume that we hayReorem 8, there is a pathy (s, 7o) in Q1,0 of length at least
4 faulty nodes and that these nodes @@, 0), (a,0,0), (0,6,0) 2 _ 5 if {s z0} is odd, andk? — 6, if {s,zo} is even. Letwy
and(0, 0, ¢), for somea, b andc all different fromo; otherwise the pe the node obo(s, 7o) adjacent tazg. W.L.o.g. we may assume
construction above in Cases)(and ) can be used to build our , and (w,w;) are healthy. There are two possibilities: either
path. PartitionQ over dimensionl to obtain thek-ary 2-cubes ¢ Q11 0O € € Q1.m, Whereo # m # 1.

Q1,0,Q1,1,- -+, Q1 1-1; note that(0,0,0), (0,6,0) and (0,0,¢)  syppose that € Qi andw; = e. A simple counting
lie in Q1,0. argument yields that there exists a liyg, z0) of po(s,wp) such
Case €) s ande lie in Q1 0. thatyo # wo # 20 andyi, 21, (yo,y1) and(zo, 1) are healthy.
By Theorem 8, there is a paih (y1,z1) in Q1,1 that avoidse
and is of length at least® —2(f; +1) — 1. Let p(s, e) be the path
obtained by joining

Temporarily suppose tha, 0, 0) is healthy. By Theorem 8, there
is a pathpg (s, e) in Q1,0 of length at leask? — 4 — ¢ but upon
which (0,0,0) may lie. If (0,0,0) lies on pg(s,e) then choose
yo = (0,0,0), otherwise chooseg to be any node ofy(s,e) po(s;wo), (wo, €)

different froms ande. .

Let y; and y; be the nodes immediately before and aftel p1(y1,21) over the |I2nk(y0,z()). As {s,z0} = {s, e}, the length
Yo, respectively, ompg (s, e). W.l.o.g., we may suppose thaf of p(s,e) is at least2k® — 2f; — 6 —e. _
andy;r are healthy nodes (and that; , v~ ,) and(yar7y;r) are Suppose th_at € Q1,1 andw; # e. By2Theorem 8! there is a
healthy links; recall, there isfaulty node outside); o). A simple  Pathpi(wi, e) In Q11 of length at least” — 2/, —1, if {wy, e}
counting argument yields that there exists a healthy node; € 1S 0dd, andk™™" —2f1 — 2, if {wy, e} is even. Define the path
Qr—1\{y,_,} such that{y, ,,ws_1} is odd andw; is healthy, p(s,e) as
for all i = 1,2,...,k — 1 (and the links of{(w;, wi41) : i = po(s,wo), (wo, w1), p1(wi,€).

0, 15 .., k—2} are healthy; to see this_, note_that there are at 'e"’}Ft{s,e} is odd then{s,zo} = {s, w1} # {wo, e} and the length
(k% —1)/2] healthy nodesoy,_, for which {y, _,,wy,_} is odd, p(s,e) is at leastk? —2f; — 7. If {s, e} is even then(s, zo} =
and this nuTber is gre_ater thah By Theorem 8, t2here exists a{s’wl} — {wo, ¢} and the length (s, ¢) is at leask?—2f; —8.
Pathpy—1 (4,1, wk—1) N Q1 k-1 OF length atleast™ —2fi—1—  * ence, ife € Q1 1 then we have a path(s, e) in Q1.0U Q11

L. ) . . . of length at leastk? — 2f1 — 6 — ¢ (the constructions can be
A simple counting argument yields that there exists a hgaltQ;s ,alized as in Fig. 9).

nodez,_o € Qi_2 \ {y o, wx_o} such that{wy_o,z,_o} is

odd andz; is healthy, for alli = 1,2,...,k — 1 (and the links s s
of {(zi,2i+1) :4=0,1,...,k — 3} are healthy). By Theorem 8,
there exists a patpy_o(wi_s, 2x_2) iN Q_o Of length at least e
k2—2fk,2—1. Yo Y1
Proceeding iteratively in this way yields a pathis, z1) defined zg 7
as
2(8,90 )s Wo > Y1) Pl—1 (V1> Wk—1), (Wg—1, W—2), wo| @ wi=e wy wi# e
Pr—2(Wk—2, 2k—2)s (k=25 2k—3)s - - -, (22, 21). %\ @ xg
By Theorem 8, there is a pat,hl(zl,yf) in Q1,1 of length at 01 o 01 0,

leastk? — 2f; — 2. Consider the path’ (s, ) defined as
Figure 9. The constructions in Cas#) (vhene € Q1 1.

' +\ (ot ot +
P (s,21),p1(21, 97 ), (U1, 90 )s po(yg - €)- . : : .
A simple counting argument yields that there is a ljnk, v1)

The length of this path i&® — 25", —6 —¢ = k* =8 — . of p(s,e) such that(ui,u2) and (vi,v2) are both healthy. By
Hence, the path’(s,¢) is as required (the construction can b&heorem 8, there is a patha(uz,v2) in Q12 of length at
visualized as in Fig. 8). leastk? — 2f, — 1. Join the pathp(s,e) to the pathps(ug,vs)
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over the link (u1,v1) and denote the resulting path bys,e) a pathpg 1(wy_ 1,8} 1) (resp.px_1(Yk_1,5%_1)) in Qp_1 of
also. Proceeding iteratively in this way @y 3,Q1,4,...,Q1 5,—1 length at least? —2f;,_1 —e, if p is even (resp. odd). Let(s, e)
yields a pattp(s, ¢) whose length is at least —22% ! ;; —~6—c =  be the path
k® — 8 — . Hence, the path(s, e) is as required.

Alternatively, suppose that € Q1. where0 # m # 1. Let Pp (s, wp), (Wp, Wp+1), Pp+1(Wp+1, Yp+1), (Yp+1, Yp+2),
y1 € Q11 be such that{s,y1} is 0dd; ym # e andy; is Po+2(Yp+2, Wp2), oo (she1,87),0'(5 e).
healthy, fori = 1,2,...,k — 1 (and the links of{(yi,yi+1) : The pathp(s, ¢) has length at leagk —p-+m — 1)k —oum i
1=1,2,...,k—2} are healthy) By the construction above, ther@Ek 1f1 9
is a pathp (S y1) in Q1,0 UQ11 of length2k? —2f; — 7. . If p # m+1 then the pathp(s, e) can be iteratively joined to a

Suppose thain # 2. Let z; € Q1,2 be such that{zz,y2} IS o inQ1 ; of lengthk® —2f; — 1, fori = m+1,m+2,...,p—1,
odd; z, # e; andz; is healthy, fori = 1,2, ..., k—1 (and the links just as we did in Casdj, to obtain a path, also denoteds, ¢),
of {(zlyziﬂ) 11 =2,3,. ._.7k — 2} are healt2hy). By Theorem 8, of length at leask? — QZk 11fz — 6 c. Hence, our path(s, ¢)
thesre is a pa;[kr]mt(yg, ;2) |3n QBLQ g;]length lc8—t2hf2 - 1 thls as required.

uppose thatm . By Theorem 8, there is a pa .

p3(z3,y3) in Q13 of length k> — 2f3 — 1. Proceeding in this Case () s ande lie in Q1,m wherem # 0.
way, we obtain paths(y2, 22), p3(z3,¥3),..., and so on until By Theorem 8, there is a pathn(s,e) in Qi,m of length at
Pt (Ym—1, zm—1), if m iS 00d, OF pm_1(zm_1,ym_1), if m least k% — 2fm — e. There exists a linkwim, ym) Of pm(s,e)
is even. Applying Theorem 8 again vyields a path,(zm,e) SUChthatvm 1, ymi1, (Wm, wmi1) @Nd(ym, ym+1) are healthy.
Of pim(ym,€) in Q1.m, depending upon whether. is odd or By Theorem 8, there exists a paihy,ii(wm+1,¥m+1) I
even, respectively. Ifn is odd (resp. even) them, (zm, ¢) (resp. Q1,m+1 Of length at leasts® — 2f,,41 — 1. Join pm(s,e) to
pm(ym,€)) has length at least® — 2f,, — 1 if {zm,e} (resp. Pm+1(Wmt1,Ym+1) OVer (wm,ym) and denote this path by
{ym, e}) is odd, andk® — 2f,, — 2 if {zm,e} (resp.{ym,e})is P(s.€) also. The patlp(s,e) can be iteratively joined to a path
even. in Q1 ; of lengthk? —2f; —1,fori =m +2,m+3,...,m—1

If m is odd then lety(s,e) be defined as to obtain a path of length at least — 8 — ¢ as required.

, Now suppose that we have faulty link. Partition over the
P (5:41): (Y1,42), 2(y2, 22), (22, 28), £3(28,43), - > (Bm—1 gimension containing this faulty link and if each resultingry 2-
zm), pm(2m, €), cubeQ1,0,Q11, .-, Q1,51 coNtains at mos? faults then apply
the construction as in Cases) @nd @) to build our path. Hence,
we may assume tha; o contains3 faulty nodes. However, if we
p'(5,51), (y1,92), p2(y2, 22), (22, 23), p3(23,93), ..., (ym—1,  follow exactly the constructions in each of Casy, (d), (€) and
ym), pm(Ym, €). (f), then these constructions still apply and we obtain a path o
) N - the required length. Exactly the same can be said of the osna
It can easily be verified that ifn is odd then{s,e} = {zm,€e}, when we have and3 faulty links. The result now follows. m
and if m is even then{s,e} = {ym,e}. Thus, the length of the  \we note that giverQk, wherek > 4 is even, andf, and fe,
pathp(s,¢) is at leastim + 1)k* 2512, f; 6 —c. f m#k—1  where f, + f. < 2n — 2, there are configurations of, faulty
then the pathp(s,e) can be iteratively joined to a path i91; nodes,f. faulty links and pairs of distinct, healthy nodes so that
of lengthk? — 2f; —1, fori = m+1,m +2,...,k— 1, just as the ongest path joining the two nodes has length exaetly-
we diq abovg, to obtain a path, also denotésl e_), of Iengt_h at of, 1 (resp.k™ — 2f, — 2) if the parities of the two nodes are
leastk® — 2537~ f; — 6 — . Hence, our patia(s, e) is as required. gifferent (resp. the same). Hence, in this sense our reaaltoe
Case €) s ande lie in Q1,5 and Q1 respectively, wheren #  viewed as optimal.
0 # p # m. Also, there are configurations @f.— 1 faulty nodes inQ% and
W.L.0.g. suppose that > m. Let s’ € Q1,9 be such that’, s}_, pairs of healthy nodes such that thg longest path joiningwioe
and(s,_,,s') are healthy ands’, s} is odd. By the construction nodes has I_ength]; take healthy, adjacent nodesand y where
in Case @), above, there is a pai(s', e) in Q1 O UQi1U...U all other neighbours of are faulty. Hence, the total number of

and if m is even then lep(s, e) be defined as

Q1. of length at leastm + 1)k2 — 22@ ofi — 7. faults in Theorem 10 cannot be increased.
Let w, be a node ofQ, such that:{s,wp} is odd;wo £ 5
and w; is healthy, fori = p,p+1,...,k — 1 (and the links of V. CONCLUSIONS

{(wi,wiy1) : i =p,p+1,...,k—2} are healthy). By Theorem 8, Theorem 10, allied with the result in [22], fully resolvesth
there is a pathy (s, wp) in Q1, of length at least? — 2f, — 1. situation as regards the existence of longest cyclek-amy n-

Let y,41 be a node of); 1 such that{w,y1,yp+1} is 0odd; cubes where the total number of faults (nodes and links) is at
yo # s, andy; is healthy, fori=p+1,p+2...,k —1 (and the most2n — 2 and where the faults are configured in a ‘worst case’
links of {(y;,vi+1) :i=p+1,p+2,...,k—2} are healthy). By scenario with respect to the pair of nodes in question. Ofsmu
Theorem 8, there is a pag) 1 (wp+1,yp+1) iN Qp4+1 Of length  there are configurations of, for exampe,—2 faulty nodes ik
at leastk? — 2fp+1 — L. where certain pairs of nodes have paths joining them of kengt

Again, by Theorem 8, there are pathg.o(yp+2, wp12), strictly greater than the bounds stated in Theorem 10. Itldvou
Pp+3(Wpt3,Yp+3), and so on, up to,_o(yr—2,wr—2), if p be interesting to build longest paths joining pairs of nobas

is even, andpy,_o(wy_s,yk_2), if p is odd, of lengthsk? — taking into account the configuration of faults (though thisuld
2fpro — Lk* — 2fp43 — 1,...,k* — 2f;,_o — 1, respectively; appear to be a demanding task).
note that{s,e} = {wy_1,s,_,}, if p is odd (resp.{s,e} = We expect that if we assume the conditional fault assumption

{yk_1,8%_1}, if p is even). Yet again, by Theorem 8, there ishen we should be able to tolerate more faults yet still prove
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a result analogous to Theorem 10. It would be worthwhile {@2] M.-C. Yang, J.J.M. Tan and L.H. Hsu, Hamiltonian circaitd linear
investigate this scenario and we conjecture that the paiiitis array embeddings in faultg-ary n-cubesJ. Parallel Distrib. Comput.,
will be exactly as in Theorem 10. to appear.
The existence of paths and cycles in (faulty) interconoecti
networks does not guarantee that we can efficiently cortstruc
these paths and cycles using a distributed algorithm imgieed
on the underlying topology (see [21] as regards the isswedvied
with the distributed embedding of a Hamiltonian cycle in altfa
k-ary n-cube). The existence of an efficient distributed algorithm
which ‘implements’ Theorem 10 should be investigated.
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