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Abstract

We study a hierarchy of logics where each formula of each logic in the hierarchy consists of a formula
of a certain fragment of transitive closure logic prefixed with an existentially quantified tuple of unary
relation symbols. By playing an Ehrenfeucht-Fraissé game specifically developed for our logics, we
prove that there are problems definable in the second level of our hierarchy that are not definable in
the first; and that if we are to prove that the hierarchy is proper in its entirety (or even that the third
level does not collapse to the second) then we shall require substantially different constructions than
those used previously to show that the hierarchy is indeed proper in the absence of the existentially
quantified second-order symbols.
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1 Introduction

The problem of computing paths in directed graphs is a fundamental problem in
computer science. Its logical analogue, the problem TC, i.e., the class of those finite
structures A consisting of a binary relation E and two constants C' and D for which
there is a path in the digraph whose edges are given by E, from the vertex C' to the
vertex D, has proved to be equally important in finite model theory and descriptive
complexity theory. For example, extending first-order logic FO with a vectorized se-
quence of Lindstrom quantifiers corresponding to the problem TC is an elementary
mechanism by which one can augment FO with a (limited) means of recursion. In
what is now a seminal result, Immerman [8, 9] showed that the resulting logic, tran-
sitive closure logic (£ TC)*[FO], restricted to the class of ordered structures captures
exactly the complexity class NL (with the corollary that NL is closed under com-
plementation). Also, Fagin [5] used the problem STRCONN, i.e., the class of finite
structures A consisting of a binary relation E for which the digraph whose edges
are given by F is strongly connected, to show that the monadic fragment of exis-
tential second-order logic can define problems not definable in the monadic universal
fragment, and vice versa.
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Since Immerman’s and Fagin’s results, transitive closure logic and (fragments of)
second-order logic have subsequently been well studied. However, logics incorporating
both the transitive closure operator TC and monadic second-order quantification have
been barely touched upon save for Courcelle’s examination [2] of the expressibility of
certain “monadic second-order extensions” of transitive closure logic on graphs in
relation to the logical representation of graphs (where the domain of a structure
might correspond to the vertices of the graph or alternatively to the vertices and the
edges).

In this paper, we study a hierarchy of logics where each formula of each logic in
the hierarchy consists of a formula ¢ of a certain fragment of transitive closure logic
prefixed with an existentially quantified tuple of unary relation symbols (which can
appear in the formula ). In essence, it is the hierarchy of transitive closure logic
studied by Grédel in [7] (and shown there to be proper on the class of all finite
structures) but with formulae prefixed with existentially quantified tuples of unary
relation symbols. The question we will mainly be concerned with is: “Is the hierarchy
still proper even when we allow prefixes of existentially quantified unary relation
symbols?” By playing an Ehrenfeucht-Fraissé game specifically developed for our
logics, we prove that there are problems definable in the second level of our hierarchy
that are not definable in the first; and that if we are to prove that the hierarchy is
proper in its entirety (or even that the third level does not collapse to the second) then
we shall require substantially different constructions than those currently available.
Whilst our results fall short of proving that the hierarchy described above is a proper
infinite hierarchy, the combinatorial complexity of our inexpressibility result testifies
to the fact that playing our Ehrenfeucht-Fraissé game is by no means straightforward
(even at the lowest level of the hierarchy), and our observations as to the efficacy of
our techniques for obtaining a full proper hierarchy result provide concrete evidence
that new combinatorial constructions will be required for further progress to be made.
Our inexpressibility result also gives rise to a proper extension of existential monadic
second-order logic which is not closed under complementation.

2 Basic definitions

We begin with some definitions. The reader is referred to [3, 10] for more details. A
signature o is a tuple (Ry,...,R,,C1,...,C.), where each R; is a relation symbol,
of arity a; > 0, and each C; is a constant symbol. A finite structure A over the
signature o, or o-structure, consists of a finite universe or domain |A| together with
a relation R; of arity a;, for every relation symbol R;, and a constant C; € |A],
for every constant symbol C; (we do not generally distinguish between relations and
relation symbols and between constants and constant symbols). A finite structure A
whose domain consists of n distinct elements has size n, and we denote the size of A
by |A| also (this does not cause confusion). We only ever consider finite structures of
size at least 2, and the class of all finite structures of size at least 2 over the signature
o is denoted STRUCT (). A problem over some signature o consists of a sub-class of
STRUCT(o) that is closed under isomorphism; that is, if A is in the problem then so
is every isomorphic copy of 4. Throughout, all our structures are finite.

It is well-known that first-order logic, FO, is not very expressive when it comes
to defining problems. One method of increasing expressibility is to extend first-
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order logic using a wvectorized sequence of Lindstrém quantifiers corresponding to
some problem Q; or, as we prefer, an operator 2 for short. We shall only ever be
concerned with the case when  is the problem TC (defined in the Introduction) over
the signature oo consisting of the binary relation symbol E and the two constant
symbols C' and D), with the resulting logic being transitive closure logic.

Transitive closure logic (£TC)*[FO] consists of those formulae built using the usual
constructs of first-order logic and also the operator TC, where the operator TC is
applied as follows.

e Suppose that (x,y,z) is a formula of (£TC)*[FO] such that:
—x and y are k-tuples of distinct variables, for some k > 1;
— z is an m-tuple of distinct variables, for some m > 0, each of which is different
from any variable of x and y; and
— all free variables of ¢ are contained in x, y or z.

e Suppose that wy and w; are k-tuples of variables and constant symbols (which
need not be distinct).

e Then
TC[)\X, yl/)](WO, wl)

is a formula of (£TC)*[FO] whose free variables are the variables of z together
with any other variables appearing in wq or wy.

If ® is a sentence of the form TC[Ax,yv¢](wo, W1), as above, over some signature o
then we interpret ® in a o-structure A as follows (note that as ® is a sentence, the
variables of z are absent and the tuples wy or w; consist entirely of constant symbols
of o). First, we build a og-structure ®(A).

e The domain of the og-structure ®(A) is |A[*.

e The relation E of ®(A) is defined via:
— for any u,v € |®(A)| = |A|*, E(u, v) holds in ®(A) if, and only if, 1)(u, v) holds
in A.
e The constants C' and D of ®(.A) are defined via:
— (C and D are the interpretation of the tuples of constants wy and wy, respec-
tively, in A.

We define that A = @ if, and only if, ®(A) € TC (the situation where ® has free
variables is similar except that @ is interpreted in expansions of o-structures by an
appropriate number of constants).

An alternative extension of FO is second-order logic. Fagin’s Theorem [4] is proba-
bly the best-known result of finite model theory: a problem is in the complexity class
NP if, and only if, it can be defined in ezistential second-order logic, X1, i.e., the
formulae of the form 3X;3X,...3X ¢, where each X; is a relation symbol and ¢ is
first-order. Second-order logic is very difficult to work with if one’s aim is to prove
inexpressibility results: however, the monadic fragment, where quantified relational
symbols must be unary, has proved more amenable. Ezistential monadic second-order
logic, consisting of the formulae of existential second-order logic where the quantified
relation symbols are unary, is often called mon-¥{ or mon-NP.
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Let o be some signature and let 4 be some o-structure. Let X7, Xs,..., X, be
new unary relation symbols. We call an interpretation for each X; over | 4| a colour-
ing of A (the 27 colours involved can be considered to be the g-tuples over {0, 1}
where the ‘" bit details whether a particular domain element of |A| is in the relation
X;). The resulting coloured structure is the expansion of A by the chosen relations
Xi1,Xs2,...,X, (and so it is a 0 U (X1, X, ..., X,)-structure).

3 Our Ehrenfeucht-Fraissé game

Our Ehrenfeucht-Fraissé game is a natural amalgamation of the Ajtai-Fagin game
from [1] and the Gridel game from [7].

DEFINITION 3.1
Let o be some signature and let { be some problem over 0. The mon-X}-TC-game
for Q is played between Spoiler and Duplicator, and proceeds in the following way.

e Spoiler chooses some positive integer k£ and a number s of sets. He then fetches k
pairs of pebbles (p1,q1), (p2,42),-- ., Pk, qk)-

e Duplicator chooses a structure A € (.

e Spoiler colours A with the s sets X, X, ..., X,, forming the coloured structure
A'.

e Duplicator chooses a structure B ¢ ).

e Duplicator colours B with the s sets Y1,Y5,...,Y;, and so she forms the coloured
structure B’.

e The game now proceeds in the same way as does the main part of the Grédel game
from [7]. That is, there is a sequence of rounds each one of which consists of one
of the following moves.

— A J-move. Spoiler places a hitherto unplaced pebble p; on an element of |A|
and Duplicator places pebble g; on an element of |B].

— A V-move. Identical to a 3-move but with Spoiler and Duplicator playing in
the opposing structures.

— A TC-move. Suppose that r pairs of pebbles have so far been placed. Spoiler
chooses some [ < (k — r)/2 and selects a sequence ug, uj, ..., u,, of I-tuples
over |A|, for some m > 1, such that ug and u,, consist entirely of constants
and previously pebbled elements. Duplicator then selects a sequence vq, v, ...,
v,, of I-tuples over |B|, for some n > 1, such that v and v,, are the analogous
tuples over |B| to ug and u,, (that is, given by the corresponding constants and
pebbles). Spoiler then places 2[ hitherto unplaced g-pebbles on the elements of
the tuples v; and v;11, for some ¢ € {0,1,...,n — 1} (of course, some pebbles
might end up being placed on the same domain element); and Duplicator replies
by placing the 2[ corresponding p-pebbles on the elements of the tuples u; and
u;y1, for some j € {0,1,...,m — 1}.

— A -TC-move. Identical to a TC-move but with Spoiler and Duplicator playing
in the opposing structures.

e The game continues until all 2k pebbles have been placed.

Duplicator wins a play of the game if, and only if, at the end of the play the mapping
defined by the pebbles and the constants of the coloured structures is a (well-defined)
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partial isomorphism from A’ to B’ (where this partial isomorphism must respect
colour).

The traditional Ehrenfeucht-Fraissé game is a restriction of that in Definition 3.1
in that there is no colouring phase and the only moves allowed are 3F-moves and V-
moves. Our game has been designed for the following logics; which are extensions of
fragments of transitive-closure logic by existential second-order quantification.

DEFINITION 3.2
For every string w over the alphabet {3,V, TC,~TC}, we define the quantifier class
TC(w) in (£TC)*[FO] inductively as follows.

e The class TC?(e) contains the quantifier-free first-order formulae.

e For a quantifier Q € {3,V}, the class TC’(Qw) is the closure under conjunc-
tions and disjunctions of the class of formulae TC®(w) U {(Qz)¢ : z is some
variable and ¢ € TC®(w)}.

e The class TC°(TCw) is the closure under conjunctions and disjunctions of the
class of formulae of TC®(w) and formulae of the form TC[\x,y¢](z, w), where
@ € TC'(w).

e The class TC?(=TCw) is the closure under conjunctions and disjunctions of the

class of formulae of TC®(w) and formulae of the form ~TC[\x, yy|(z, w), where
@ € TC(w).

As remarked in [7], any formula of (£TC)*[FO] is equivalent to a formula in some
class TC®(w), where w € {TC,=TC}*.

DEFINITION 3.3
For every string w over the alphabet {3,V, TC,-TC} and for every ¢ > 1, we define
the quantifier class mon-¥{-TC?(w) as

{3X,3X,...3X,¢: each X; is a unary relation symbol and ¢ € TC®(w)},
with mon-21-TC%(w) defined as TC®(w). We set
mon-%{-TC(w) = U;2 mon-5{-TCY (w);
and
mon-$1-TC = {1 : ¢ € mon-£}-TC(w), for some w € {3,V, TC,-TC}*}.
||

Our game, above, gives rise to the following proposition, whose proof follows from
that of Theorem 3.5 below.
ProrosiTiON 3.4
Duplicator has a winning strategy for the mon-X1-TC-game for Q if, and only if, Q
is not definable in mon-X1-TC. [ |

Proposition 3.4 is just a special case of a more general result. For any word w €
{V,3, TC,~TC}* and for any ¢ > 0, we may define the mon-X1-TC?(w)-game to be
the same as the mon-Y}-TC-game, save that Spoiler is obliged to choose g as his value
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of s and to choose his moves according to the string w, i.e., the it move of the play
is determined by the i*"* symbol of w; and so the string w also dictates the number
of rounds in any play. In any play of the game, it is always the case that all pebbles
are placed (and so it may be the case that not every choice for k is legitimate: it all
depends on w). The mon-X1-TC(w)-game is defined as expected (where Spoiler can
choose any value for s). Then we have the following result.

THEOREM 3.5

Let Q be a problem over some signature o. Let w € {¥,3, TC,~TC}* and let ¢ > 0.
Then Duplicator has a winning strateqy in the mon-X1-TC(w)-game (resp. mon-
Y1-TC(w)-game) for Q0 if, and only if, Q is not definable in mon-1-TC?(w) (resp.
mon-31-TC(w)).

ProoF. We shall only prove the theorem in the case where ¢ is given. The case where
q is unrestricted is similar.

We begin by proving the “if” direction. This is the most useful direction in practice
and is the easier to prove. In fact, we prove the contrapositive: that is, if {2 is definable
by a sentence of mon-X1-TCY(w) then Duplicator does not have a winning strategy.

Suppose that 2 is defined by the sentence ¢ = 3IX;3X,...3X,p, where ¢ €
TC%(w). During the first step of the game, Spoiler is obliged to take s = g. Duplicator
responds by choosing some structure A € © which Spoiler must colour. As A =,
there must be some assignment to the sets X1, X»,..., X, so that the colouring A’
of A by this assignment satisfies A’ |= ¢. Spoiler chooses this colouring to obtain the
coloured structure A’.

Duplicator now responds by choosing some B ¢ ) and colouring it. Since B [~ v,
no matter how she colours B, to obtain the coloured structure B’, it is always the case
that B' £ ¢.

The game now proceeds as does the Griadel game on 2. The proof that Spoiler
has a winning strategy (and hence that Duplicator does not) may be found in [7].
We need merely observe that the proof presented in [7] still goes through when the
structures in question are coloured.

For the converse, we will prove that if Duplicator does not have a winning strategy
in the mon-%}-TC?(w)-game for Q then  is definable in the corresponding logic.

If Duplicator does not have a winning strategy then Spoiler must have such a
strategy. That is, whichever A € Q Duplicator chooses, it may be coloured by the ¢
sets in such a way that whichever B ¢ Q Duplicator chooses, and however she colours
it, Spoiler has a winning strategy in the Gradel-part of the game. For any A, denote
Spoiler’s winning colouring of A by A’.

Since the proof of correctness of the Gradel game goes through even when the
structures are coloured, it follows that whichever A € Q2 Duplicator chooses as her first
structure, and whichever coloured B’ she chooses as her second structure, there is at
least one formula @ 4 g € TC?(w) such that A" = pap and B' |E =45 . Of course,
pA,p will make use of up to g free monadic second-order variables. Let ® 4 be the
conjunction of these ¢ 4 5 over all possible choices of B’. This conjunction is permitted
since there are only a finite number of such formulae up to logical equivalence. Note
that ® 4 € TCY(w).

Now, clearly A" E ®4. Also, for every B ¢ 2 and for every possible colouring
B' of B, B' = =®4. So let ¥ be the disjunction of the formulae of {®4 : A € Q}.
Once again, this is permitted since there are only a finite number of such formulae
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up to logical equivalence. Then ¥ € TC%(w) and, moreover, for any A € Q, A’ £ .
Furthermore, for all B ¢ © and for any colouring B’ of B, B’ |= —¥.
So for every A € Q:

AE3IX3X, ... 3X, 0
where the X; are chosen to be the free second-order variables of ¥. Similarly, for
every B &
BE-3X;3X,...3X,0.

Hence, 3X;3X5...3X,¥ is a mon-X1-TCY(w) formula which defines Q. ||

4 Playing our game

In [8], Immerman exhibited a particularly strong normal form result for formulae of
transitive closure logic on the class of ordered structures. This normal form result was
established by induction on the symbolic complexity of a formula. In fact, his case-by-
case analysis goes through even on unordered structures except for the elimination
of the universal quantifier. With this observation in mind, consider the following
hierarchy.

DEFINITION 4.1
The hierarchy

TC(0) C V-TC(0) C TC(1) CV-TC(1) C TC(2) C ...
within transitive closure logic is defined as follows.

e TC(0) consists of all formulae of the form TC[Ax, yy]|(wo,w1), where ¢ is first-
order (and may contain free variables other than those of x and y).

e V-TC(m) is the universal closure of TC(m), i.e., the set of formulae of the form
VziVxs ... Vr,e, where ¢ € TC(m).

e TC(m + 1) is the set of formulae of the form TC[Ax,y¢|(wo, w1), where ¢ €
V-TC(m). [ |
Grédel proved the following result [7].

THEOREM 4.2
QOwver signatures containing at least two constant symbols which are always interpreted

differently in any structure, TC(m) C V-TC(m) C TC(m + 1), for all m > 0. ||

One can ask whether Gridel’s hierarchy result holds if one prefixes the formulae of
the logics TC(7) and V-TC(i) with existentially quantified prefixes of (new) relation
symbols.

DEFINITION 4.3
Define

mon-X1-TC(i) = {3X;3X,...3X,p:¢ >0, each X, is a unary relation
symbol and ¢ € TC(i)};
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and

mon-X1-V-TC(i) = {3X;3X,...3X,¢:q >0, each X is a unary relation
symbol and ¢ € V-TC(i)}.

The resulting hierarchy is
mon-Y1-TC(0) € mon-£{-V-TC(0) € mon-£1{-TC(1) C mon-X}-¥V-TC(1) C ...
||

Note that mon-%1-TC(0) is a strict extension of mon-X} (TC can be defined in the
former logic but not the latter [1]).

Let us now make a start on answering the question posed prior to Definition 4.3.
In order to make developing winning strategies in our games easier, we shall use a
result due to Fagin, Stockmeyer and Vardi [6].

For any structure A, we say that a,b € |A| are adjacent if either a = b or there is
some tuple t in some relation of A such that both a and b appear as elements of t.
The degree of an element a € |A| is the number of elements of |4| adjacent to a but
not equal to a. For any integer d > 1 and a € |A|, we define the neighbourhood of
radius d about a, Nbd(d, a), recursively as follows.

Nbd(1,a) = {a}.
Nbd(d +1,a) = {be€ |A|:bis adjacent to some b’ € Nbd(d,a)}.

The d-type of an element a € |A| is the isomorphism type of Nbd(d,a) (where a is
regarded as a distinguished constant).

Crucial to Fagin, Stockmeyer and Vardi’s result, alluded to above, is the notion of
(d, m)-equivalence. Let d and m be non-zero natural numbers. Two structures A and
B over the same signature are (d, m)-equivalent if for any d-type 7, either A and B
have exactly the same number of elements of d-type 7 or they both have at least m
elements of d-type 7. Fagin, Stockmeyer and Vardi proved the following [6].

THEOREM 4.4

Let o be some signature containing just relation symbols (and no constant symbols).
Let [ and f be non-zero natural numbers. There there exist non-zero natural numbers d
and m where d depends solely on | and m depends only on | and f such that whenever
A and B are (d, m)-equivalent and every element of both structures has degree at most
f then Duplicator has a winning strategy in the traditional Ehrenfeucht-Fraissé game
in which Spoiler is obliged to choose | as his value of k. [ |

Theorem 4.4 can often be used to simplify the proof that Duplicator has a winning
strategy in an Ehrenfeucht-Fraissé game. For instead of actually having to exhibit a
strategy, it is sufficient to prove that the two structures chosen by Duplicator are, in
some sense, “locally equivalent”. This is often a considerably easier task.

In fact, Theorem 4.4 also holds over signatures which contain constant symbols (as
remarked in [11]). To see this, let 0 = (Ry, R2,...,R,,C1,Cs,...,C.) be a signature
containing the ¢ constant symbols C1, Cs, . ..C., and let A be a o-structure. Consider
now the purely relational signature o/ = (Ry, Ra,...,R,, R}, RS, ..., R.) in which
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each constant symbol of ¢ has been replaced by a unary relation symbol. We define
the structure A’ over ¢’ in the following way. The universe of A’ is equal to the
universe of A. Each relation R; of A’ is identical to the relation R; of A. Each
relation R} of A’ is defined so that Rj}(u) holds for precisely one value u € |A'|;
specifically, for that value for which (A,u) E C; = z. Clearly, for any d and m, a
pair of structures A and B are (d,m)-equivalent if, and only if, the corresponding
structures A’ and B’ are (d, m)-equivalent. Furthermore, Duplicator has a winning
strategy in the traditional Ehrenfeucht-Fraissé game on A and B if, and only if, she
has a winning strategy on A’ and B'.

THEOREM 4.5

Let 0 = (E,C, D), where E is a binary relation symbol and C and D are constant
symbols. Let ) be the problem consisting of those o-structures which when considered
as undirected graphs, in the natural way, are connected. Then £ cannot be defined by
a sentence of the logic mon-X1-TC(0).

ProoF. We shall play a mon-¥{-TC(w)-game where w is a string over the alphabet
{V¥,3,TC,~TC} of the form TCw', with w' € {V,3}*. Spoiler begins by choosing
positive integers s and k. Of course, the value of k£ will determine the length of tuples
chosen by Spoiler in the first TC-move of the Gridel-part of any play of the game:
call this number ko and let ky = k — ko (and so k; is the length of w'). Duplicator
takes f = 2 and | = k; and applies Theorem 4.4 to obtain d and m. Duplicator begins
by choosing the structure A to be a cycle of a certain length p, together with two
constants C' and D (the structure B will ultimately be a pair of disjoint cycles, hence
our choice of f = 2). The choice of the actual value for p is made as follows.

Given any undirected path of length 2d (with 2d 4+ 1 vertices), there are exactly
(2%)29+1 ways of colouring it (with 2° colours). Consequently, for any r, if Duplicator
chooses p > r(2d + 1)25(2(”1) then no matter how Spoiler might colour the cycle
A, the resulting coloured cycle A’ must contain at least r identically coloured, non-
overlapping regions of length 2d (any region includes 2d + 1 vertices, so there are at
least r2°(2?+1) batches of 2d + 1 vertices on the cycle; and thus some colouring of a
region appears at least r times). Call these regions Ay, Ay, ..., A, with ' > r. Note
that in fact p may be chosen to be much smaller than this and this property would
still hold: we are interested only in the existence of such a p, not in a minimal value.

We must now choose a suitable value for r. The number of distinct isomorphism
types of radius d on the cycle A (ignoring, for the moment, the constants C' and
D which must also eventually be chosen) is at most 25(2d+1) Qo the power set of
such isomorphism types has size at most 22"V " Consider any “gap” between two
regions A; and A;q, where i € {1,2,...,r' — 1}, or between A,. and A; (note that
no vertex lies in both a gap and a region). Every gap gives rise to the subset of
isomorphism types of radius d, i.e., d-types, witnessed by the vertices of the gap. If
we choose 7 > 2(m + 2ko + 2)223(2d+1) then there exist at least 2(m + 2kg + 2) gaps
giving rise to the same set S of isomorphism types of radius d. Moreover, any one of
the isomorphism types in S is witnessed by at least 2(m + 2ko + 2) vertices in A’. So,
Duplicator chooses p > 2(m + 2kq + 2)22"7""" (2d + 1)25(24+1),

Consider the following strategy of Duplicator. Duplicator chooses a cycle A of
length p, together with two constants C' and D, and Spoiler replies by colouring this
cycle, with 2% colours, to give the coloured cycle A’. Duplicator takes a copy of A’
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and determines the r' identically coloured regions and (at least) 2(m + 2ko + 2) gaps
giving rise to the same set of isomorphism types of radius d. Duplicator chooses a gap,
without loss of generality between the regions A; and As, say, such that neither of
the constants C' and D lie in the gap nor in the adjacent A-regions. Then Duplicator
copies the portion of the coloured cycle from the median vertex of the region A;
through the gap to the median vertex of the region A;;1; and then Duplicator fuses
the two extreme vertices of this path (that is, the copies of the median vertices) to
form a coloured cycle. This process can be visualised in Fig. 1. Duplicator chooses
the coloured structure B’ to be the disjoint union of the copy of the coloured cycle A’
(complete with constants) and the newly-formed coloured cycle. Denote by By the
coloured cycle of B’ that is isomorphic to A’; and denote by B] the other coloured
cycle.

Constant free

~
\
=~
Gap
A B,

Figure 1. Forming the new cycle.

According to the game, Spoiler chooses a path of ko-tuples over |A’|. Duplica-
tor’s strategy is such that she replies with the isomorphic path of ko-tuples over |By|.
Whichever pair of tuples Spoiler places pebbles on, Duplicator responds isomorphi-
cally. They now play a traditional Ehrenfeucht-Fraissé game, determined by w, on
the structures A’ and B' where each has been augmented with 2k constants. Let
us consider the isomorphism types of radius d in each structure. Obviously, the iso-
morphism types arising from A’ and Bj, are identical; and there are exactly the same
numbers of vertices of each present. As regards any isomorphism type arising from a
vertex of B], there are at least m vertices of identical type in .A. To see this, note that
ignoring the constants C' and D and the 2k, pebbles, there are at least m + 2kq + 2
vertex-disjoint portions of A" of the form (A;,gap, A;+1) giving rise to the same set
of isomorphism types as witnessed by the vertices of |B|. Taking into account C' and
D and the 2ky pebbles results in at least m such portions. Hence, A’ and B’ are
(d, m)-equivalent and Duplicator has a winning strategy by Theorem 4.4 (note that
we are applying Theorem 4.4 to coloured structures). Theorem 3.5 implies that  is
not definable in mon-X}-TC(0) and the result follows. ||

Note that we deliberately chose our signature in Theorem 4.5 to contain (distinct)
constant symbols so that we could actually define sentences of mon-X-1-TC(0).

COROLLARY 4.6
mon-X-1-TC(0) C mon-X-1-V-TC(0); and mon-X-1-TC(0) is not closed under com-
plementation.
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PRroOF. Follows immediately from Theorem 4.5 and the fact [5] that the problem
consisting of those undirected graphs that are not connected is definable in mon-X};
and so in mon-X-1-TC(0). [ |

Of course, we would like to obtain that the hierarchy in Definition 4.3 is proper.
However, Gréidel’s constructions from [7], to prove his hierarchy result in the absence
of second-order quantification, cannot be used as we now explain. We have already
commented (prior to Definition 3.3) that existential first-order quantification can be
simulated using a TC quantifier. One consequence of this is that in order to prove that
V-TC(m) C TC(m + 1), Gridel merely needed to show that V-TC(m) C 3-V-TC(m)
(the definition of this latter logic should be clear). However, when we have a second-
order 3 quantifier present, this is not the case. For a sentence of mon-%{-3-V-TC(m)
of the form

X 13X, . AX FyV Vs .. V20,

with p € TC(m), is equivalent to one of the form
IX13X, .. XAV (Y £ 07 AVY(-Y (y) V V2 V2s .. Vamep)).

At first sight, it may appear that we have not gained very much: we still require
a first-order existential quantifier to express “Y # ()”. Note, however, that “Y #
(" € TC(0), and consequently may be moved inside ¢. Thus our original sentence is
equivalent to one from mon-X1-V-TC(m). As a consequence, any attempt to prove
a full hierarchy result analogous to Gridel’s must make more essential use of the
quantifier TC than its ability to define first-order existential quantification. This
appears to be a combinatorially difficult problem to circumvent.

As a final remark, note that in our proof of Theorem 4.5, we make no real use of the
quantifier TC beyond the fact that the problem TC is closed under superstructures;
that is, if A4 and B are structures over the signature (E, C, D) such that |A| C |B], Ais
B restricted to |A4] and A € TC then necessarily B € TC. If we were to define a logic
mon-X1-T, for some problem I that is closed under superstructures, just as we have
defined mon-¥{-TC (complete with associated fragments and analogous semantics),
the proof of Theorem 4.5 essentially goes through so that we obtain the following
more general result.

COROLLARY 4.7

Let o = (E,C, D), where E is a binary relation symbol and C and D are constant
symbols. Let 2 be the problem consisting of those o-structures which when considered
as undirected graphs, in the natural way, are connected. Let I' be some problem that
is closed under superstructures. Then 0 cannot be defined by a sentence of the logic
mon-31-T'(0).
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